首页 | 本学科首页   官方微博 | 高级检索  
     


A consecutive modal pushover procedure for nonlinear static analysis of one-way unsymmetric-plan tall building structures
Authors:Mehdi Poursha  Faramarz KhoshnoudianA.S. Moghadam
Affiliation:
  • a Department of Civil Engineering, Sahand University of Technology, Tabriz, Iran
  • b Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran
  • c International Earthquake and Seismology Research Centre, Tehran, Iran
  • Abstract:Seismic responses of unsymmetric-plan tall buildings are substantially influenced by the effects of higher modes and torsion. Considering these effects, in this article, the consecutive modal pushover (CMP) procedure is extended to estimate the seismic demands of one-way unsymmetric-plan tall buildings. The procedure uses multi-stage and classical single-stage pushover analyses and benefits from the elastic modal properties of the structure. Both lateral forces and torsional moments obtained from modal analysis are used in the multi-stage pushover analysis. The seismic demands are obtained by enveloping the peak inelastic responses resulting from the multi-stage and single-stage pushover analyses. To verify and appraise the procedure, it is applied to the 10, 15, and 20-storey one-way unsymmetric-plan buildings including systems with different degrees of coupling between the lateral displacements and torsional rotations, i.e. torsionally-stiff (TS), torsionally-similarly-stiff (TSS) and torsionally-flexible (TF) systems. The modal pushover analysis (MPA) procedure is implemented for the purpose of comparison as well. The results from the approximate pushover procedures are compared with the results obtained by the nonlinear response history analysis (NL-RHA). It is demonstrated that the CMP procedure is able to take into account the higher mode influences as well as amplification or de-amplification of seismic displacements at the flexible and stiff edges of unsymmetric-plan tall buildings. The extended procedure can predict to a reasonable accuracy the peak inelastic responses, such as displacements and storey drifts. The CMP procedure represents an important improvement in estimating the plastic rotations of hinges at both flexible and stiff sides of unsymmetric-plan tall buildings in comparison with the MPA procedure.
    Keywords:Consecutive modal pushover (CMP) procedure   Unsymmetric-plan tall buildings   Torsion   Higher mode effects   Seismic responses   Special moment-resisting frame (SMRF)
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号