首页 | 本学科首页   官方微博 | 高级检索  
     


Experiment and numerical modeling of prestressed concrete curved slab with spatial unbonded tendons
Authors:Nan Zhang  Chung C Fu  Huimin Che
Affiliation:
  • a College of Civil Engineering, Nanjing University of Technology, Nanjing 210009, China
  • b The Bridge Engineering Software and Technology Center, Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
  • c College of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Abstract:Curved prestressed concrete structures with unbonded tendons are widely used in highway interchanges and industrial cooling towers, etc. In engineering practice, there is a demand to establish calculating methods for analyzing and designing these prestressed concrete curved structures with unbonded tendons. However, there are some difficulties in calculating the ultimate strength of these curved structures. The major difficulty is to calculate the ultimate stress in unbonded tendons. The assumption of a plane cross-section cannot be adopted here because of the slip between unbonded tendon and concrete. Thus, many formulas for calculating the ultimate stress in unbonded tendons were mainly based on experimental data fitting. In order to obtain the ultimate stress in unbonded tendons from mechanical principles, instead of using experimental data fitting formula, an advanced nonlinear analysis method to calculate ultimate stress in unbonded tendons is developed. The analysis model is established by using the Reissner-Mindlin medium thickness plate theory allowing for the influence of the transverse shear deformation. The orthotropic increment constitutive model of concrete is extended to solve the medium thickness plate problem. The tension stiffening of the cracked concrete is considered in the nonlinear analysis model. The numerical formulation of calculating the stress increment in an unbonded tendon is established by using the spatial displacement relationship. Instead of using general-purpose programs such as ANSYS and ABAQUS, a computer program specifically for predicting the nonlinear response of a prestressed concrete curved slab structure with unbonded tendons and calculating the ultimate stress in unbonded tendons is developed by authors. Six test models of prestressed concrete curved slabs with unbonded tendons are reported. The calculated results using this program are compared with test results, where their relative deviation is less than 3.0%, which validates the proposed method. These study results can be used for analysis, especially to design the strength of prestressed concrete curved structures with unbonded tendons. And, this research work also proposes a new approach, which can be customized to fit into general purposed FEM programs, such as APDL (ANSYS Parametric Design Language), for analyzing the nonlinear structural behavior of these curved structures.
    Keywords:Prestressed concrete curved slab  Ultimate stress in unbonded tendons  Nonlinear finite analysis
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号