首页 | 本学科首页   官方微博 | 高级检索  
     


Aspects of tactile probing on the micro scale
Authors:E.J.C. Bos
Affiliation:a Eindhoven University of Technology, Eindhoven, The Netherlands
b Xpress Precision Engineering B.V., Eindhoven, The Netherlands
Abstract:This paper discusses the aspects that influence the interaction between a probe tip and a work piece during tactile probing in a coordinate measuring machine (CMM). Measurement instruments are sensitive to more than one physical quantity. When measuring the topography of a work piece, the measurement result will therefore always be influenced by the environment and (local) variations in the work piece itself. A mechanical probe will respond to both topography and changes in the mechanical properties of the surface, e.g. the Young's modulus and hardness. An optical probe is influenced by the reflectivity and optical constants of the work piece, a scanning tunneling microscope (STM) responds to the electrical properties of the work piece and so on (Franks, 1991 [1]).The trend of component miniaturization results in a need for 3-dimensional characterization of micrometer sized features to nanometer accuracy. As the scale of the measurement decreases, the problems associated with the surfaceprobe interactions become increasingly apparent (Leach et al., 2001 [2]). The aspects of the interaction that are discussed include the deformation of probe tip and work piece during contact, surface forces during single point probing and scanning, dynamic excitation of the probe, synchronization errors, microfriction, tip rotations, finite stiffness effects, mechanical filtering, anisotropic stiffness, thermal effects and probe repeatability.These aspects are investigated using the Gannen XP 3D tactile probing system developed by Xpress Precision Engineering using modeling and experimental verification of the effects. The Gannen XP suspension consists of three slender rods with integrated piezo resistive strain gauges. The deformation of the slender rods is measured using the strain gauges and is a measure for the deflection of the probe tip. It is shown that the standard deviation in repeatability is 2 nm in any direction and over the whole measurement range of the probe. Finally, this probe has an isotropic stiffness of 480 N/m and a moving mass below 25 mg.
Keywords:Dimensional metrology   Tactile probing   Micro scale effects
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号