首页 | 本学科首页   官方微博 | 高级检索  
     

滑坡变形的回归-神经网络预测模型研究
引用本文:王秀丽,李恒凯. 滑坡变形的回归-神经网络预测模型研究[J]. 人民黄河, 2012, 34(7): 90-92
作者姓名:王秀丽  李恒凯
作者单位:1. 江西理工大学 经济管理学院,江西赣州,341000
2. 江西理工大学 建筑与测绘工程学院,江西赣州,341000
基金项目:国家自然科学基金资助项目,江西省教育厅科技研究项目
摘    要:受多种因素影响,滑坡变形具有趋势性和随机性的特点。从滑坡变形监测数据着手,将监测数据分离成趋势值和随机值,建立了滑坡变形的回归-神经网络预测模型。该模型采用逐步回归方法对滑坡变形的趋势值进行预测,用BP神经网络预测方法对滑坡变形的随机值进行预测。利用金沙江乌东德坝址区金坪子滑坡TP06点高程位移变化实测数据,对该模型进行了验证。结果表明:预测误差不超过11%,具有较高的预测精度。

关 键 词:预测模型  滑坡变形  逐步回归  BP神经网络

Research on Prediction Model of Regression-Neural Network for Landslide Deformation
WANG Xiu-li , LI Heng-kai. Research on Prediction Model of Regression-Neural Network for Landslide Deformation[J]. Yellow River, 2012, 34(7): 90-92
Authors:WANG Xiu-li    LI Heng-kai
Affiliation:1.College of Economic Management,Jiangxi University of Science and Technology,Ganzhou 341000,China; 2.College of Architecture and Surveying Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
Abstract:Because affected by many factors,it has trend and randomness for the monitoring data of landslides deformation.This paper started from the monitoring data for landslide deformation,the data was separated into trend values and random values,established a landslide deformation prediction model of regression-Neural network.The model used stepwise regression to predict trend values of landslide deformation and used BP neural network to predict to predict the random value of landslide deformation.The actual monitoring data for elevation displacement variation of Jinpingzi landslide TP06 point in Wudongde dam site area of the Jinsha River was used for model verification.The results show that the error of 6 issue data to predict is less than 11%,which is of high precision.
Keywords:prediction model  landslide deformation  stepwise regression  BP neural network
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号