首页 | 本学科首页   官方微博 | 高级检索  
     

年均径流预测的遗传神经网络模型研究
引用本文:吴海波,赵晓慎,王文川. 年均径流预测的遗传神经网络模型研究[J]. 人民黄河, 2012, 34(4): 37-38,41
作者姓名:吴海波  赵晓慎  王文川
作者单位:华北水利水电学院,河南郑州,450011
基金项目:河南省教育厅自然科学研究计划项目(2010B570002);华北水利水电学院高层次人才科研启动项目(200821)
摘    要:为了进一步提高BP网络模型对径流预测的精度,采用遗传算法优化了BP网络初始的权值和阈值。实例研究结果表明:该方法克服了传统BP网络极易陷入局部极小值点等缺点,提出的遗传神经网络预测模型能够提高预测精度。

关 键 词:遗传算法  BP神经网络  径流预测

Study and Application on Genetic-Neural Network Prediction Model for the Annual Average Runoff of Reservoir
WU Hai-bo , ZHAO Xiao-shen , WANG Wen-chuan. Study and Application on Genetic-Neural Network Prediction Model for the Annual Average Runoff of Reservoir[J]. Yellow River, 2012, 34(4): 37-38,41
Authors:WU Hai-bo    ZHAO Xiao-shen    WANG Wen-chuan
Affiliation:(North China University of Water Resources and Hydroelectric Power,Zhengzhou 450011,China)
Abstract:In order to improve the predication accuracy of back propagation network model for annual runoff of reservoir,back propagation network had been used to optimize the weights and threshold by genetic algorithm of prediction model.The study results show that,this method overcomes the shortcomings that traditional back propagation network traps into local minima easily,the genetic-neural network model has a higher accuracy than that of traditional BP network.
Keywords:genetic algorithms  BP neural network  runoff prediction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号