摘 要: | 为提高光伏功率预测结果的准确性,提出了基于泄漏积分型回声状态网络LIESN(leaky-integrator echostate network)的具有在线学习功能的预测方法。预测模型中采用泄漏积分神经元增强储备池的短期记忆能力,通过最小二乘在线学习算法增加临近时间样本对权值的影响;综合考虑预测精度与运行时间,分析了LIESN关键参数对预测性能的影响,并提出了LIESN关键参数的设定方法。实例证明,在线学习LIESN的预测精度优于BP神经网络、经典ESN及离线学习LIESN模型,测试结果的归一化均方根误差达到0.098 6,验证了方法的有效性。
|