首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的变电站硬压板状态检测与识别算法
引用本文:汪洋,黎恒烜,鄂士平,王成智,张侃君. 基于深度学习的变电站硬压板状态检测与识别算法[J]. 沈阳工业大学学报, 2005, 42(6): 676-680. DOI: 10.7688/j.issn.1000-1646.2020.06.11
作者姓名:汪洋  黎恒烜  鄂士平  王成智  张侃君
作者单位:国网湖北省电力有限公司 a.设备管理部, b. 电力科学研究院, 武汉 430000
基金项目:国家电网公司科技项目(52153218000G)
摘    要:针对变电站的一键顺控停、送电操作不当将导致投退操作的问题,提出了一种基于深度学习的变电站硬压板状态检测与识别算法.使用一个共享网络提取图像特征,基于多任务学习方法建立3个分支联合解决硬压板位置检测、投切状态检测和标识检测这3个任务;采集标注了8 000张硬压板图片数据用于训练和测试.结果表明,所提出的方法能够在提升硬压板状态识别精度的同时,也提升一键顺控操作的安全性.

关 键 词:一键顺控  硬压板  深度学习  文字检测  文字识别  数据标注  可靠性  多任务学习  

State detection and recognition algorithm for hard platens of substation based on deep learning
WANG Yang,LI Heng-xuan,E Shi-ping,WANG Cheng-zhi,ZHANG Kan-jun. State detection and recognition algorithm for hard platens of substation based on deep learning[J]. Journal of Shenyang University of Technology, 2005, 42(6): 676-680. DOI: 10.7688/j.issn.1000-1646.2020.06.11
Authors:WANG Yang  LI Heng-xuan  E Shi-ping  WANG Cheng-zhi  ZHANG Kan-jun
Affiliation:a. Department of Equipment Management, b. Electric Power Research Institute, State Grid Hubei Electric Power Co. Ltd., Wuhan 430000, China
Abstract:Aiming at the problem that the one-key sequential control of stopping and improper power transmission operation of substation can lead to throwback and retreat operation, a state detection and recognition algorithm for hard platens of substation based on deep learning was proposed. A shared network was used to extract image features, and three branches were established according to a multi-task learning method to jointly finish three tasks, i. e. position detection, switching state detection and identity detection of hard platens. In addition, 8 000 hard platens were collected and labeled for training and testing. The results show that the as-proposed method can improve the accuracy of state recognition of hard platens, and it also improves the safety of one-key sequential operation at the same time.
Keywords:one-key sequential control  hard platen  deep learning  character detection  character recognition  data annotation  reliability  multi-task learning  
点击此处可从《沈阳工业大学学报》浏览原始摘要信息
点击此处可从《沈阳工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号