首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊C-均值聚类的时序概率潮流快速计算方法
引用本文:李国庆,陆为华,李赫,边竞,王振浩. 基于模糊C-均值聚类的时序概率潮流快速计算方法[J]. 电力自动化设备, 2021, 41(4): 116-122. DOI: 10.16081/j.epae.202102031
作者姓名:李国庆  陆为华  李赫  边竞  王振浩
作者单位:东北电力大学 现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林 吉林 132012;国网内蒙古东部电力有限公司通辽供电公司,内蒙古 通辽 028000
基金项目:国网内蒙古东部电力有限公司重点科技项目(SGMDTL00YWJS2000669)
摘    要:为衡量光伏出力与负荷的时序变化特性对电力系统运行状态的影响,基于模糊C-均值聚类算法提出一种时序概率潮流快速计算方法.将一天分为24个时段,采用自适应扩散核密度估计法分别建立光伏出力与负荷的概率密度分布模型,提高概率模型局部适应性,并通过Copula理论描述二者之间的相关关系;利用模糊C-均值聚类法划分光伏出力与负荷场...

关 键 词:扩散核  时序变化特性  模糊C-均值聚类  快速计算  概率潮流
收稿时间:2020-05-27
修稿时间:2020-12-28

Fast calculation method of time sequence probabilistic power flow based on fuzzy C-means clustering
LI Guoqing,LU Weihu,LI He,BIAN Jing,WANG Zhenhao. Fast calculation method of time sequence probabilistic power flow based on fuzzy C-means clustering[J]. Electric Power Automation Equipment, 2021, 41(4): 116-122. DOI: 10.16081/j.epae.202102031
Authors:LI Guoqing  LU Weihu  LI He  BIAN Jing  WANG Zhenhao
Affiliation:Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China;Tongliao Power Supply Company of State Grid East Inner Mongolia Electric Power Company Limited, Tongliao 028000, China
Abstract:In order to measure the influence of time sequence changing characteristics of photovoltaic output and load on the operation state of power system, a fast calculation method of time sequence probabilistic power flow is proposed based on fuzzy C-means clustering algorithm. A day is divided into 24 periods, and the adaptive diffusion kernel density estimation method is adopted to build the probability density distribution models of photovoltaic output and load respectively, which improves the local adaptability of the probability model, and the correlation between them is described by Copula theory. The fuzzy C-means clustering method is used to divide the photovoltaic output and load scenarios, and the scenario clustering center and scenario occurrence probability are used to substitute Monte Carlo simulation process for probabilistic power flow calculation, which greatly reduces the calculation times. The simulation and analysis are carried out based on the measured data of a certain place in Northwest China and IEEE 30-bus system, and the results show that the proposed method can improve the calculation speed of time sequence probabilistic power flow on the premise of ensuring accuracy.
Keywords:diffusion kernel   time sequence changing characteristics   fuzzy C-means clustering   fast calculation   probabilistic power flow
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号