首页 | 本学科首页   官方微博 | 高级检索  
     

基于波段影像统计信息量加权K-means聚类的高光谱影像分类
引用本文:李玉,甄畅,石雪,朱磊. 基于波段影像统计信息量加权K-means聚类的高光谱影像分类[J]. 控制与决策, 2021, 36(5): 1119-1126
作者姓名:李玉  甄畅  石雪  朱磊
作者单位:辽宁工程技术大学测绘与地理科学学院,辽宁阜新123000;葫芦岛宏跃集团有限公司,辽宁葫芦岛125200
基金项目:国家自然科学基金青年科学基金项目(41301479);辽宁省高校创新人才支持计划项目(LR2016061);辽宁省教育厅科学技术研究一般项目(LJCL009).
摘    要:针对分类过程中如何合理利用高光谱影像波段问题,提出一种基于波段影像统计量加权K-means聚类的高光谱影像分类算法.该算法的核心思想在于:由波段含有的信息量及波段间的相关性确定各波段权重,同时考虑各波段对各聚类的重要性.首先,根据波段影像的熵、标准差及均值定义波段信息量函数,根据相邻波段影像互信息定义相关性函数;其次,...

关 键 词:波段加权  统计信息  熵信息  K-means  高光谱影像  分类

Algorithm based on band statistical information weighted K-means for hyperspectral image classification
LI Yumakebox,ZHEN Changmakebox,SHI Xuemakebox,ZHU Leimakebox. Algorithm based on band statistical information weighted K-means for hyperspectral image classification[J]. Control and Decision, 2021, 36(5): 1119-1126
Authors:LI Yumakebox  ZHEN Changmakebox  SHI Xuemakebox  ZHU Leimakebox
Affiliation:School of Geomatics,Liaoning Technical University,Fuxin123000,China; Huludao Hongyue Group CO., Ltd., Huludao125200,China
Abstract:Aiming at the problem of how to use band information reasonably in the hyperspectral image classification, this paper proposes a hyperspectral image classification algorithm based on band statistical information weighted K-means clustering. The algorithm considers not only the quantity of information contained in each band and the correlation between bands but also the importance of each band to different clusters. The band weight is determined by the statistics of information and correlation functions. The statistics of information function is defined according to the entropy, standard deviation and mean value of the band image. The correlation function is defined according to the mutual information of adjacent band images. In order to express the importance of each band to different clusters, the band-category weight is introduced, and its entropy information measurement is defined. The above two types of weights are embedded into the K-means objective function. The final classification result can be obtained by minimizing the objective function. Classification experiments are conducted on Salinas and Pavia Centre hyperspectral images using the proposed algorithm, the traditional K-means algorithm, the PCA + K-means algorithm and the subspace band selection + K-means algorithm, respectively. The results demonstrate that the proposed algorithm is higher than the other three algorithms on overall accuracy and Kappa. It shows that the proposed algorithm can effectively improve the performance of hyperspectral image classification.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号