首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical-Activation-Triggered Gibbsite-to-Boehmite Transition and Activation-Derived Alumina Powders
Authors:Chiang Chye Yong  John Wang
Affiliation:Department of Materials Science, Faculty of Science, National University of Singapore, Singapore 119260, Singapore
Abstract:Mechanical activation of monoclinic gibbsite (Al(OH)3) in nitrogen led to the formation of nanocrystalline orthorhombic boehmite (AlOOH) at room temperature. The boehmite phase formed after merely 3 h of mechanical activation and developed steadily as the mechanical-activation time increased. Forty hours of mechanical activation resulted in essentially single-phase boehmite, together with α-alumina (α-Al2O3) nanocrystallites 2–3 nm in size. The sequence of phase transitions in the activation-derived boehmite was as follows: boehmite to γ-Al2O3 and then to α-Al2O3 when flash-calcined at a heating rate of 10°C/min in air. γ-Al2O3 formed at 520°C, and flash calcination to 1100°C led to the formation of an α-Al2O3 phase, which exhibited a refined particle size in the range of 100–200 nm. In contrast, the gibbsite-to-boehmite transition in the unactivated gibbsite occurred over the temperature range of 220°–330°C. A flash-calcination temperature of 1400°C was required to complete the conversion to α-Al2O3 phase, with both δ-Al2O3 and θ-Al2O3 as the transitional phases. The resulting alumina powder consisted of irregularly shaped particles 0.4–0.8 μm in size, together with an extensive degree of particle agglomeration.
Keywords:alumina  boehmite  transitions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号