首页 | 本学科首页   官方微博 | 高级检索  
     

用多项式预测滤波消噪的传感器动态特性辨识
引用本文:刘清. 用多项式预测滤波消噪的传感器动态特性辨识[J]. 控制理论与应用, 2007, 24(4): 679-682
作者姓名:刘清
作者单位:南京师范大学,计算机科学系,江苏,南京,210042
基金项目:国家自然科学基金资助项目(60474079); 江苏省高校自然科学基金资助项目(06KJD520099).
摘    要:在利用传感器进行动态测量时,为了得到精确的测量结果,需要建立传感器动态特性的数学模型,传感器动态特性可以通过系统辨识得到.但是,测量噪声的存在,使得辨识得到的传感器动态特性与实际动态特性存在一定误差,影响到测量系统的精度.为了解决该问题,本文讨论了多项式预测滤波和中值滤波相结合的方法对传感器输出信号进行滤波消噪.然后,利用消噪后的信号,通过系统辨识方法建立传感器动态特性的数学模型.研究表明,采用本文研究的方法可以克服测量噪声对传感器动态特性辨识的影响,并将该方法用于薄膜热电偶的动态特性辨识.

关 键 词:传感器  动态特性  系统辨识  噪声  多项式预测滤波  薄膜热电偶
文章编号:1000-8152(2007)04-0679-04
收稿时间:2005-11-22
修稿时间:2005-11-222006-07-20

Identification of sensor's dynamic characteristic based on denoising by polynomial FIR predictors
LIU Qing. Identification of sensor's dynamic characteristic based on denoising by polynomial FIR predictors[J]. Control Theory & Applications, 2007, 24(4): 679-682
Authors:LIU Qing
Affiliation:Department of Computer Science, Nanjing Normal University, Nanjing Jiangsu 210042, China
Abstract:In dynamic measurements,it is necessary to build a mathematical model for a sensor's dynamic characteristic to obtain accurate measurement data,and the sensor's dynamic characteristic can be determined by system identification. However,the noises in measurement may produce adverse influences to system identification,and cause error between the identified characteristic and the real one.To reduce these disadvantageous influences,sensor output signal polluted by additive noise are processed by hybrid filter with polynomial FIR predictors and median(PMH).After the signal is denoised by PMH,the mathematical model of sensor's dynamic characteristic is obtained by system identification.The study shows that the presented approach can reduce the influences of noise.This approach has been applied to the identification of the characteristic of a thin-film thermocouple.
Keywords:sensor  dynamic characteristic  system identification  noise  polynomial FIR predictors  thin-film thermocouple
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号