首页 | 本学科首页   官方微博 | 高级检索  
     

采用量子粒子群算法耦合差分进化算法优化BP神经网络的铣床热误差预测研究
作者姓名:吴金文  王玉鹏  周海波
作者单位:南京工业大学浦江学院;南通航运职业技术学院
摘    要:针对铣床主轴运行产生的热误差问题,采用改进BP神经网络预测模型,并对预测结果进行验证。融合量子粒子群算法和差分进化算法的各自优点,给出混合算法寻优操作流程。分析BP神经网络结构,给出改进BP神经网络优化流程图,构造铣床热误差适应度函数,采用混合算法优化BP神经网络预测模型。通过具体实例对铣床热误差进行实验验证,预测结果显示:BP神经网络预测偏差值较大,在Y轴、Z轴方向预测产生的偏差最大值分别为7.3μm和7.5μm,改进BP神经网络预测偏差值较小,在Y轴、Z轴方向预测产生的偏差最大值分别为2.8μm和2.9μm。同时,改进BP神经网络预测铣床热误差与实际偏差值波动较小。采用改进BP神经网络预测铣床热误差精度较高,可以提高主轴加工工件的精度。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号