首页 | 本学科首页   官方微博 | 高级检索  
     


Scattering from coated targets using a frequency-dependent, surfaceimpedance boundary condition in FDTD
Authors:Penney   C.W. Luebbers   R.J. Schuster   J.W.
Affiliation:Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA;
Abstract:One method for reducing the radar cross section of objects such as aircraft and missiles is the application of a lossy coating. Computing scattering from targets coated with dielectric/magnetic materials is challenging due to the reduced wavelengths of an incident field inside the coating. These smaller wavelengths require finer sampling of the fields. A technique for implementing this calculation without greatly increased memory requirements or computation times has previously been developed using a finite-difference time-domain (FDTD) code which has been tested in one, two, and three dimensions. The method requires knowledge of the frequency behaviour of the complex permittivity and permeability, and the thickness of the dielectric coating and is applicable to thin coatings when one or more reflections from the conducting surface are significant. The impedance at the surface of the coating is computed based on the given information and then approximated using a summation of causal functions. The approximated impedance is Z-transformed and added to the FDTD code in special update equations for the fields at the surface of the coating. No computations are required inside the coatings so the FDTD grid can be sized based on the free-space wavelength. The result obtained is valid over the entire frequency range of interest, assuming that the approximated surface impedance is a good match over the entire range. Comparisons with measurements of a scale model coated missile show good agreement and almost no increase in resource requirements over a standard FDTD calculation for an uncoated metal target
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号