首页 | 本学科首页   官方微博 | 高级检索  
     


Bulge testing and fracture properties of plasma-enhanced chemical vapor deposited silicon nitride thin films
Authors:Wei Zhou  Jinling Yang  Yan Li  Fuhua Yang
Affiliation:a Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, PR China
b State Key Laboratory of Transducer Technology, Shanghai 200050, PR China
Abstract:The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin films deposited both on a bare Si substrate and on a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain moduli and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 ± 19 GPa and 178 ± 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 ± 26 GPa and 194 ± 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 ± 0.33 GPa and 3.08 ± 0.79 GPa for the bare Si substrate and the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced on the bare Si substrate, the volume integration gave a significantly better agreement between data and model, implying that the volume flaws are the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal.
Keywords:Bulge test   Fracture property   Silicon nitride   Weibull distribution function
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号