A massively parallel fault-tolerant architecture for time-critical computing |
| |
Authors: | Ishfaq Ahmad |
| |
Affiliation: | (1) Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong |
| |
Abstract: | Building large-scale parallel computer systems for time-critical applications is a challenging task since the designers of such systems need to consider a number of related factors such as proper support for fault tolerance, efficient task allocation and reallocation strategies, and scalability. In this paper we propose a massively parallel fault-tolerant architecture using hundreds or thousands of processors for critical applications with timing constraints. The proposed architecture is based on an interconnection network called thebisectional network. A bisectional network is isomorphic to a hypercube in that a binary hypercube network can be easily extended as a bisectional network by adding additional links. These additional links add to the network some rich topological properties such as node symmetry, small diameter, small internode distance, and partitionability. The important property of partitioning is exploited to propose a redundant task allocation and a task redistribution strategy under realtime constraints. The system is partitioned into symmetric regions (spheres) such that each sphere has a central control point. The central points, calledfault control points (FCPs), are distributed throughout the entire system in an optimal fashion and provide two-level task redundancy and efficiently redistribute the loads of failed nodes. FCPs are assigned to the processing nodes such that each node is assigned two types of FCPs for storing two redundant copies of every task present at the node. Similarly, the number of nodes assigned to each FCP is the same. For a failure-repair system environment the performance of the proposed system has been evaluated and compared with a hypercube-based system. Simulation results indicate that the proposed system can yield improved performance in the presence of a high number of node failures. |
| |
Keywords: | Massively parallel systems real-time systems fault tolerance task scheduling performance evaluation |
本文献已被 SpringerLink 等数据库收录! |
|