首页 | 本学科首页   官方微博 | 高级检索  
     


Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities
Authors:W.C. ChengChun-Ho Liu
Affiliation:Department of Mechanical Engineering, The University of Hong Kong Pokfulam Road, Hong Kong, China
Abstract:Five sets of large-eddy simulations (LES) were performed to examine the characteristics of flows and pollutant dispersion in two-dimensional (2D) urban street canyons of unity building-height-to-street-width ratio in neutral, unstable, and stable thermal stratifications. The characteristic flows fall into the skimming flow regime for all the cases tested. The mean wind speed is increased and decreased, respectively, in unstable and stable conditions. Turbulence is enhanced in unstable conditions. Whereas, in stable conditions, the low-level temperature inversion weakens the recirculating flows forming another layer of stagnant air in the vicinity of the ground level. Unexpectedly, an increase in turbulence is found in the street canyon core in the slightly stable condition (Richardson number Rb=0.18). The turbulence promotion could be caused by the unique geometry of 2D street canyon in which the stable stratification slows down the primary recirculation. The rather stagnant flows in turn sharpen the roof-level vertical velocity gradient and deter the entrainment penetrating down to the ground level, leading to a substantial pollutant accumulation. While the pollutant tends to be well mixed in the street canyons in neutral and unstable conditions, a mildly improved pollutant removal in unstable conditions is observed because of the enhanced roof-level buoyancy-driven turbulence.
Keywords:Urban street canyon   Thermal stratification   Pollutant dispersion   Large-eddy simulation   Turbulence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号