首页 | 本学科首页   官方微博 | 高级检索  
     

关于分形图像压缩的收敛性
引用本文:李红达,叶正麟,王小平,彭国华. 关于分形图像压缩的收敛性[J]. 西北工业大学学报, 2001, 19(4): 651-653
作者姓名:李红达  叶正麟  王小平  彭国华
作者单位:西北工业大学数学与信息科学系,
基金项目:国家自然科学基金(10071060)
摘    要:提出弱双曲迭代函数系统压缩方法,证明了其吸引子的存在性和解码序列的收敛性。使用弱IFS的优点在于变换可以是非线性的,而且放宽了对压缩因子的要求,这有利于变换的选取和构造,同时可以由较少的变换对图像进行分形编码,有利于提高压缩比。理论和数值实例,用本的方法进行图像压缩,可选择更广泛、更灵活的变换,能获得更好的图像质量和更高的压缩效率。

关 键 词:图像压缩 分形 IFS 收敛性 图像编码 弱双曲迭代函数
文章编号:1000-2758(2001)04-0651-03
修稿时间:2000-07-07

On Relaxing Condition on Compression Factor in Fractal Image
Li Hongda,Ye Zhenglin,Wang Xiaoping,Peng Guohua. On Relaxing Condition on Compression Factor in Fractal Image[J]. Journal of Northwestern Polytechnical University, 2001, 19(4): 651-653
Authors:Li Hongda  Ye Zhenglin  Wang Xiaoping  Peng Guohua
Abstract:Fractal image compression based on IFS (iterated function system) theory is a new and efficient method, but its requirement about compression factor is too severe, thus limiting increase of compression rate and causing computational complexity. Therefore we propose weak IFS theory whose requirement about compression factor is much less severe. Using the weak IFS theory we can select its transforms in a range much larger than is possible with IFS theory, and this much wider choice is conducive to obtaining higher compression rate and to reducing computational complexity. In section 1, we prove theorem 1, which ensures existence of the attractor in weak IFS theory; we also prove theorems 2 and 3, which ensure the convergence of the decoding sequence in weak IFS theory. Numerical examples in section 2 do show that weak IFS theory is conducive to obtaining higher compression rate and to reducing computational complexity.
Keywords:fractal image compression   IFS (iterated function system)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号