首页 | 本学科首页   官方微博 | 高级检索  
     

多传感器最优信息融合白噪声反卷积滤波器
引用本文:邓自立,王欣,李云. 多传感器最优信息融合白噪声反卷积滤波器[J]. 电子学报, 2005, 33(5): 860-863
作者姓名:邓自立  王欣  李云
作者单位:黑龙江大学自动化系,黑龙江哈尔滨,150080;黑龙江大学自动化系,黑龙江哈尔滨,150080;黑龙江大学自动化系,黑龙江哈尔滨,150080
基金项目:国家自然科学基金,黑龙江省重点实验室基金
摘    要:基于Kalman滤波方法和白噪声估计理论,在线性最小方差按矩阵加权最优信息融合准则下,提出了带相关噪声系统多传感器信息融合白噪声反卷积滤波器.提出了各传感器滤波误差之间的协方差阵计算公式,可用于计算最优融合加权阵.同单传感器情形相比,可提高融合滤波精度.它可减少在线计算负担,便于实时应用.它可应用于石油地震勘探信号处理.一个3传感器信息融合Bernoulli-Gaussian白噪声反卷积滤波器的仿真例子说明了其有效性.

关 键 词:相关噪声  最优信息融合  反射地震学  反卷积  白噪声估值器  Kalman滤波方法
文章编号:0372-2112(2005)05-0860-04
收稿时间:2004-07-01

Multisensor Optimal Information Fusion White Noise Deconvolution Filter
DENG Zi-li,WANG Xin,LI Yun. Multisensor Optimal Information Fusion White Noise Deconvolution Filter[J]. Acta Electronica Sinica, 2005, 33(5): 860-863
Authors:DENG Zi-li  WANG Xin  LI Yun
Affiliation:Department of Automation,Heilongjiang University,Heilongjiang,Harbin 150080,China
Abstract:Based on the Kalman filtering method and white noise estimation theory,under linear minimum variance information fusion criterion weighted by matrices,a multisensor information fusion white noise deconvolution filter is presented for systems with correlated noises.The formula of computing covariances among filtering errors of sensors is presented,which can be applied to compute the optimal fused weighting matrices.Compared to the single sensor case,the accuracy of fused filtering is improved.It can reduce the on-line computational burden,and is suitable for real time applications.It can be applied to signal processing in oil seismic exploration.A simulation example for 3-sensor information fusion Bernoulli-Gaussian white noise deconvolution filter shows its effectiveness.
Keywords:correlated noises  optimal information fusion  reflection seismology  deconvolution  white noise estimators  Kalman filtering method
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号