首页 | 本学科首页   官方微博 | 高级检索  
     

自适应代表个体选择方法的协作协进化算法
引用本文:杨东勇,邱宇航,郑月锋. 自适应代表个体选择方法的协作协进化算法[J]. 浙江工业大学学报, 2005, 33(5): 499-502
作者姓名:杨东勇  邱宇航  郑月锋
作者单位:1. 浙江工业大学,软件学院,浙江,杭州,310032
2. 浙江工业大学,信息工程学院,浙江,杭州,310032
摘    要:
协作协进化算法中,代表个体选择按贪心度不同可分为最优选择和随机选择.最优选择对于大多数子模块之间关联性不是很强的问题都较为有效,但对于子模块间有很强关联性的问题,随机选择比最优选择更为有效.所以,提出一种自适应代表个体选择方法的协作协进化算法,该算法通过进化停滞判断函数将最优选择和随机选择两种代表个体选择方法结合起来.仿真结果表明,该算法对于子模块间强弱不同的问题都能有效的找到解.

关 键 词:协作协进化  随机选择  最优选择  自适应
文章编号:1006-4303(2005)05-0499-04
修稿时间:2005-02-25

Adaptive representation selection of cooperative co-evolution Algorithm
YANG Dong-yong,QIU Yu-hang,ZHENG Yue-feng. Adaptive representation selection of cooperative co-evolution Algorithm[J]. Journal of Zhejiang University of Technology, 2005, 33(5): 499-502
Authors:YANG Dong-yong  QIU Yu-hang  ZHENG Yue-feng
Abstract:
With the different degree of greediness, there are two methods of representation selection in cooperative co-evolution algorithm: best selection and random selection. Best selection can do well in most situation when the inter-activity between sub-components of the problem is not so strong. But to the problem with strong inter-activity between sub-components, random selection is better than best selection. In this paper we proposed an adaptive representation selection cooperative co-evolution algorithm. This approach combines two representation selection ways of best selection and random selection, by a stagnate judge function. The simulation results show that this algorithm is effective to the problems with different inter-activity degree between sub-components.
Keywords:cooperative co-evolution  random selection  best selection  adaptability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号