首页 | 本学科首页   官方微博 | 高级检索  
     

基于稀疏分解的复合电能质量扰动分类
引用本文:王凌云,李开成,肖厦颖,赵晨. 基于稀疏分解的复合电能质量扰动分类[J]. 电测与仪表, 2018, 55(1): 14-20. DOI: 10.3969/j.issn.1001-1390.2018.01.003
作者姓名:王凌云  李开成  肖厦颖  赵晨
作者单位:华中科技大学电气与电子工程学院强电磁工程与新技术国家重点实验室,武汉,430074
基金项目:国家自然科学基金资助项目
摘    要:针对复合电能质量扰动分类问题,提出了一种基于稀疏分解的分类新方法。该方法通过构建正余弦字典、脉冲字典将电能质量扰动信号分解为近似部分和细节部分,并从中提取了8个特征量。将特征向量输入改进支持向量机中可实现30种复合扰动的准确分类。基于MATLAB生成数据和真实电网数据的仿真结果表明:针对稀疏分解得到的特征向量,改进支持向量机的分类精度高于BP网络和极限学习机;文中方法对单一扰动及复合扰动均有较强的分类能力,且具有一定的抗噪声能力。

关 键 词:电能质量  扰动分类  稀疏分解  支持向量机  power quality  disturbance classification  sparse decomposition  SVM
收稿时间:2017-03-15
修稿时间:2017-03-15

Classification for multiple power quality disturbances based on sparse decomposition
wanglingyun,Li Kaicheng,Xiao Xiayin and Zhao Chen. Classification for multiple power quality disturbances based on sparse decomposition[J]. Electrical Measurement & Instrumentation, 2018, 55(1): 14-20. DOI: 10.3969/j.issn.1001-1390.2018.01.003
Authors:wanglingyun  Li Kaicheng  Xiao Xiayin  Zhao Chen
Affiliation:Huazhong University of Science and Technology,Huazhong University of Science and Technology,Huazhong University of Science and Technology,Huazhong University of Science and Technology
Abstract:In this paper,a new classification method based on sparse decomposition is proposed to solve the problem of multiple power quality disturbance classification.Firstly,the power quality disturbance signal is decomposed into approximate part and detail part by constructing a sine cosine dictionary and a pulse dictionary.Then,8 features are extracted from the sparse decomposition results.Finally,the feature vector is inputted into the improved support vector machine,which can be used to classify the 30 kinds of complex disturbances accurately.Simulation results based on MATLAB data and real grid data show that the classification accuracy of SVM is higher than that of BP network and ELM.Besides,the classification method proposed in this paper has strong classification ability for single disturbance and complex disturbance,and has certain anti-noise performance.
Keywords:power quality   disturbance classification   sparse decomposition   SVM
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号