首页 | 本学科首页   官方微博 | 高级检索  
     


Remote plasma enhanced metal organic chemical vapor deposition of TiN for diffusion barrier
Authors:Ju-Young Yun  Shi-Woo Rhee
Affiliation:(1) Laboratory for Advanced Materials Processing (LAMP) Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 790-784 Pohang, Korea
Abstract:TiN films were deposited with remote plasma metal organic chemical vapor deposition (MOCVD) from tetrakis-diethyl-amido-titanium (TDEAT) at substrate temperature of 250–500°C and plasma power of 20–80 W. The growth rate using N2 plasma is slower than that with H2 plasma and showed 9.33 kcal/mol of activation energy. In the range of 350–400°C., higher crystallinity and surface roughness were observed and resistivity was relatively low. As the temperature increased to 500°C., randomely oriented structure and smooth surface with higher resistivity were obtained. At low deposition temperature, carbon was incorporated as TiC phase, as the deposition temperature increases, carbon was found as hydrocarbon. At 40 W of plasma power, higher crystallinity and rough surface with lower resistivity were obtained and increasing the plasma power to 80 W leads to low crystallinity, smooth surface and higher resistivity. It may be due to the incorporation of hydrocarbon decomposed in the gas phase. Surface roughness was found to be related to the crystallinity of the film.
Keywords:MOCVD  TiN  TDEAT  Plasma  Diffusion Barrier
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号