首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive Task-Space Control of Flexible-Joint Manipulators
Authors:R Colbaugh  K Glass
Affiliation:(1) Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM, 88003, U.S.A
Abstract:This paper considers the motion control and compliance control problemsfor uncertain rigid-link, flexible-joint manipulators, and presents newadaptive task-space controllers as solutions to these problems. The motioncontrol strategy is simple and computationally efficient, requires littleinformation concerning either the manipulator or actuator/transmissionmodels, and ensures uniform boundedness of all signals and arbitrarilyaccurate task-space trajectory tracking. The proposed compliant motioncontrollers include an adaptive impedance control scheme, which isappropriate for tasks in which the dynamic character of theend-effector/environment interaction must be controlled, and an adaptiveposition/force controller, which is useful for those applications thatrequire independent control of end-effector position and contact force. Thecompliance control strategies retain the simplicity and model independenceof the trajectory tracking scheme upon which they are based, and are shownto ensure uniform boundedness of all signals and arbitrarily accuraterealization of the given compliance control objectives. The capabilities ofthe proposed control strategies are illustrated through computer simulationswith a robot manipulator possessing very flexible joints.
Keywords:robot control  flexible-joint manipulators  adaptive control  Lyapunov methods
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号