首页 | 本学科首页   官方微博 | 高级检索  
     

纳米SiO2/低密度聚乙烯复合材料的陷阱特性与电击穿机制
引用本文:高俊国,赵贺,李霞,郭宁,张晓虹.纳米SiO2/低密度聚乙烯复合材料的陷阱特性与电击穿机制[J].复合材料学报,2019,36(4):801-810.
作者姓名:高俊国  赵贺  李霞  郭宁  张晓虹
作者单位:哈尔滨理工大学 电气与电子工程学院, 工程电介质及其应用教育部重点实验室, 黑龙江省电介质工程重点实验室, 哈尔滨 150080
基金项目:国家自然科学基金(51577045);黑龙江省普通本科高等学校青年创新培养计划(UNPYSCT-2015047)
摘    要:以低密度聚乙烯(LDPE)为聚合物基体,通过熔融共混的方式填充不同粒径的纳米SiO2无机颗粒,制备纳米SiO2/LDPE复合材料,研究提高聚乙烯电绝缘性能的纳米改性方法和机制。利用SEM表征纳米SiO2在LDPE基体中的微观形态和分散程度,采用DSC和偏光显微镜(PLM)分析纳米SiO2对LDPE基体结晶度和结晶形态的影响,通过热刺激电流法(TSC)分析纳米SiO2/LDPE复合材料的陷阱密度和陷阱能级,并结合电击穿的Weibull分布研究纳米复合材料的击穿机制。研究结果表明:纳米SiO2填充可以改变复合材料结晶度,进而增加LDPE基体本征结构缺陷和陷阱密度,同时填充纳米SiO2颗粒可引入比LDPE基体本征陷阱更深的陷阱能级,纳米SiO2填充颗粒引入的陷阱能级深度随着复合材料结晶度的增加而先增大后减小,填充浓度3wt%时可最有效地通过俘获载流子而抑制电击穿过程,纳米SiO2/LDPE复合材料的击穿场强达到最高值。与60 nm SiO2颗粒相比,30 nm SiO2填充颗粒具有更高的比表面积,界面电极化导致更高的介电常数,更高密度的纳米界面深陷阱态对于提高电击穿场强更有效。当填充浓度为5wt%时,纳米颗粒的团聚作用导致纳米复合材料的击穿强度降低。基于电双层理论提出了电子捕捉模型和界面结构模型,合理阐释了纳米SiO2/LDPE复合材料的微观陷阱特性及宏观电击穿机制。 

关 键 词:聚合物纳米复合材料    界面模型    陷阱特性    介电特性    电击穿    Weibull分布
收稿时间:2018-02-28

Trap characteristics and electric breakdown mechanism of SiO2/low density polyethylene nanocomposites
GAO Junguo,ZHAO He,LI Xia,GUO Ning,ZHANG Xiaohong.Trap characteristics and electric breakdown mechanism of SiO2/low density polyethylene nanocomposites[J].Acta Materiae Compositae Sinica,2019,36(4):801-810.
Authors:GAO Junguo  ZHAO He  LI Xia  GUO Ning  ZHANG Xiaohong
Affiliation:Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Heilongjiang Provincial Key Laboratory of Dielectric Engineering, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, PR China
Abstract:The silicon dioxide/low density polyethylene (SiO2/LDPE) nanocomposites were developed by filling SiO2 nanoparticles into LDPE matrix with melt-blending preparing method to investigate nano-modification method and correlated mechanism for insulation performance improvement of LDPE. The micro-morphology and dispersivity of SiO2 nanofillers composite in LDPE matrix were characterized by scanning electron microscopy (SEM). The differential scanning calorimetry (DSC) and polarizing microscope (PLM) were employed to testify the effects of SiO2 nanofillers on the crystallinity and crystal morphology of LDPE matrix. The trap energy level and density were tested by thermal stimulated current (TSC), combining the Weibull statistics of electric breakdown strength to investigate insulation breakdown performance and attributed mechanism. The nano-SiO2 filling rate can change the crystallinity of composites, while the change will increase the intrinsic structural defects and trap density of LDPE matrix. At the same time, filling nano-SiO2 particles can introduce deeper trap levels than the intrinsic traps of LDPE matrix. Therefore, the most efficient inhibition to electric breakdown process by trapping charge carriers with largest energy, and thus the maximum breakdown strength are obtained for 3wt% filling rate of SiO2/LDPE nanocomposites. In comparison with 60 nm SiO2 nanoparticles, the 30 nm SiO2 nanoparticles with larger specific surface area filled into LDPE render higher dielectric permittivity from SiO2-LDPE interface polarization, indicating the more efficient enhancement for electric breakdown strength by higher-density deep traps at larger-area nano-interfaces. Based on dielectric double-layer theory, the reliable models of electron capture and interface structure were put forward so as to reasonably represent the microscopic trap characteristics and macroscopic electric breakdown mechanism of SiO2/LDPE nanocomposites.
Keywords:polymer nanocomposite  interface model  trap characteristics  dielectric properties  electric breakdown  Weibull statistics  
点击此处可从《复合材料学报》浏览原始摘要信息
点击此处可从《复合材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号