首页 | 本学科首页   官方微博 | 高级检索  
     

深度残差神经网络高分辨率遥感图像建筑物分割
引用本文:王宇,杨艺,王宝山,王田,卜旭辉,王传云. 深度残差神经网络高分辨率遥感图像建筑物分割[J]. 遥感技术与应用, 2019, 0(4): 736-747
作者姓名:王宇  杨艺  王宝山  王田  卜旭辉  王传云
作者单位:河南理工大学测绘与国土信息工程学院;河南理工大学国土资源部野外科学观测研究基地;河南理工大学电气工程与自动化学院;北京航空航天大学自动化科学与电气工程学院;沈阳航空航天大学计算机学院
基金项目:国家自然科学基金项目(61503017、61703287、61573129);航空科学基金项目(2016ZC51022)
摘    要:针对高分辨率遥感图像建筑物分割问题,提出一种Encoder-Decoder的深度学习框架,建立输入图像到分割结果之间的端对端的分割模型。其中Encoder以残差网络为基础,自动提取建筑物的特征;Decoder采用反卷积实现对特征图的上采样,从而完成对建筑物的分割;同时引入批量规范化处理,降低了神经网络权重训练过程中的梯度竞争,从而减小了神经网络的训练难度。实验表明:提出的建筑物分割算法能有效提取建筑物的块状特征和边缘信息,降低复杂道路等干扰的影响,提升建筑物的分割精准度,算法对邻近复杂道路的建筑物、规律性建筑物、单体复杂建筑物等3种典型建筑物的分割精度分别为:0.837、0.892和0.630;F值分别为:0.851、0.879和0.730。同时,多分辨率条件下的分割实验结果表明,该算法对于一定范围内的多分辨率遥感图像具有较好的泛化能力。

关 键 词:高分辨率遥感图像  建筑物分割  深度学习  残差神经网络  批量规范化

Building Segmentation in High Resolution Remote Sensing Image by Deep ResNet
Wang Yu,Yang Yi,Wang Baoshan,Wang Tian,Bu Xuhui,Wang Chuanyun. Building Segmentation in High Resolution Remote Sensing Image by Deep ResNet[J]. Remote Sensing Technology and Application, 2019, 0(4): 736-747
Authors:Wang Yu  Yang Yi  Wang Baoshan  Wang Tian  Bu Xuhui  Wang Chuanyun
Affiliation:(School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454000,China;Field Scientific Observation and Research base of Ministry of Land and Resources,Henan Polytechnic University,Jiaozuo 454000,China;School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China;School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;School of computer Science,Shenyang Aerospace University,Shenyang 110136,China)
Abstract:This paper addresses the buildings segmentation in high resolution remote sensing image and proposes an Encoder-Decoder architecture of deep learning with End-to-End model,in which Encoder is based on ResNet,and the features needed by segmentation are exacted automatically,and the Decoder produces the segmentation result by deconvolution. Furthermore,in the training process,batch normalization is employed to decrease the gradient competition,so as to reduce the difficulty of training the deep neural network.The experiment results show that the algorithm effectively exacts the bulk feature and edge information of building in the high resolution remote sensing image,therefore the complex road disturbance is suppressed convincingly,and the building segmentation precision is improved effectively,the segmentation precision for three typical buildings,the building besides complex road,the ordered buildings and the complex single building,are 0.836 5,0.892 4,and 0.629 7 respectively;and the F-measure are 0.851 4,0.878 6 and 0.729 8,respectively. Meanwhile,the experiment results for multi-resolution remote sensing images show that the method can be generalized to the multi-resolution image within limits.
Keywords:High resolution remote sensing image  Building segmentation  Deep learning  ResNet  Batch normalization
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号