首页 | 本学科首页   官方微博 | 高级检索  
     

基于多时相Landsat 8 OLI影像的农作物遥感分类研究
引用本文:李晓慧,王宏,李晓兵,迟登凯,汤曾伟,韩重远. 基于多时相Landsat 8 OLI影像的农作物遥感分类研究[J]. 遥感技术与应用, 2019, 0(2): 389-397
作者姓名:李晓慧  王宏  李晓兵  迟登凯  汤曾伟  韩重远
作者单位:环境遥感与数字城市北京市重点实验室北京师范大学地理科学学部;国家统计局山西调查总队
基金项目:国家重点研发计划重点专项"天然草地生态系统服务的定量评估"(2016YFC0500502);国家自然科学基金项目"内蒙古温带典型草原返青期变化对生长率的时空影响研究"(41471350);国家创新团队计划项目(41321001);教育部创新团队计划项目(IRT_15R06)
摘    要:时序遥感数据及地物细微光谱特征对于提取作物分布有重要作用,基于此,利用多时相Landsat 8 OLI影像,结合光谱角填图和决策树分类提取大同市新荣区东部地区主要农作物分布情况,并与最大似然法提取的分布结果进行对比。研究发现:①研究区内春玉米、谷物、大豆和马铃薯种植面积依次减小并呈镶嵌式分布;②结合光谱角填图与决策树分类总体精度为85.34%,Kappa系数为0.76,与最大似然法结果相比,总体精度提高22.51%,Kappa系数增加0.31,分类结果与实际作物分布具有更好的一致性;③利用时序遥感影像进行作物分类的精度明显高于单时相遥感影像的分类精度,且从光谱角差异的角度分析时序数据可有效削弱中高分辨率影像物谱不一致现象的影响。研究结果验证了多时相遥感影像对农作物分类研究的积极作用,并发展了光谱角填图法结合决策树分类在中高分辨率遥感影像中进行农作物分类的用法,具有一定的应用前景。

关 键 词:光谱角填图  决策树分类  最大似然  农作物分类  LANDSAT  8  OLI

Study on Crops Remote Sensing Classification based on Multi-temporal Landsat 8 OLI Images
Li Xiaohui,Wang Hong,Li Xiaobing,Chi Dengkai,Tang Zengwei,Han Chongyuan. Study on Crops Remote Sensing Classification based on Multi-temporal Landsat 8 OLI Images[J]. Remote Sensing Technology and Application, 2019, 0(2): 389-397
Authors:Li Xiaohui  Wang Hong  Li Xiaobing  Chi Dengkai  Tang Zengwei  Han Chongyuan
Affiliation:(Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China;National Bureau of Statistics Shanxi Investigation Team,Taiyuan 030001,China)
Abstract:It is crucial for agricultural production to know crop planting situation.Temporal remote sensing images and subtle spectral characteristics of ground features play an important role in extracting crops distribution.At this point,multi-temporal Landsat 8 OLI images were used to extracting the distribution of main crops in the east of Xinrong district of Datong city by using Spectral Angle Mapper(SAM)combined with the decision tree classification,and the extracting result was compared with the result that maximum likelihood extracted.The results show that:①The planting area of spring corn,grain,soybean and potato is decreased and mosaic distribution in order.②The overall accuracy obtained by SAM combined with the decision tree classification is 85.34% and the Kappa coefficient is 0.76,which is outperformed the results of maximum likelihood with the increase of 22.51% and 0.31,respectively,the classification results was more consistent with the actual distribution of main crops.③The classification accuracy of main crops used the multi-temporal remote sensing images was obviously higher than that of single-temporal image,and the difference between ground features and spectra in middle or high resolution images can effectively weaken by analyzing multi-temporal data from the perspective of difference of spectral angle.The results not only confirmed the positive effect of multi-temporal remote sensing images on crops classification,but also developed the SAM combined with decision tree classification in crops classification of medium-high resolution remote sensing images,which has a certain application prospect.
Keywords:Spectral Angle Mapping  Decision Tree Classification  Maximum Likelihood  Crops classification  Landsat 8 OLI
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号