首页 | 本学科首页   官方微博 | 高级检索  
     

森林类型遥感分类及变化监测研究进展
引用本文:颜伟,周雯,易利龙,田昕. 森林类型遥感分类及变化监测研究进展[J]. 遥感技术与应用, 2019, 0(3): 445-454
作者姓名:颜伟  周雯  易利龙  田昕
作者单位:贵阳市森林资源管理站;贵阳市林业绿化调查规划设计院;中国林业科学研究院资源信息研究所
基金项目:高分专项(民用部分)共性关键技术项目(21-Y20A06-9001-17/18)
摘    要:森林是陆地生态系统最主要的植被类型,利用遥感技术对森林类型分类识别和动态监测对于全球碳循环研究和森林资源可持续发展具有重要意义。梳理了森林遥感分类的主要经典方法,从传统的基于像元的分类方法、面向对象方法再到新型基于红边波谱信息以及基于深度学习的分类方法,并详细介绍了现有的各种方法的应用案例及其优势。最后,提出了现阶段森林遥感分类和遥感变化监测研究中的局限性,为新形势下的森林资源动态监管提供借鉴。

关 键 词:多源遥感数据  森林分类  深度学习  变化监测

Research Progress of Remote Sensing Classification and Change Monitoring on Forest Types
Yan Wei,Zhou Wen,Yi Lilong,Tian Xin. Research Progress of Remote Sensing Classification and Change Monitoring on Forest Types[J]. Remote Sensing Technology and Application, 2019, 0(3): 445-454
Authors:Yan Wei  Zhou Wen  Yi Lilong  Tian Xin
Affiliation:(Forest Resources Management Station of Guiyang City,Guiyang 550003,China;Institute of Forestry Greening Inventory and Planning of Guiyang City,Guiyang 550003,China;Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing 100091,China)
Abstract:Forest is one of the main vegetation type in the terrestrial ecosystem,and using remote sensing technology on discriminating and change monitoring forest types are of great significance importance for the global carbon cycle study and sustainable development of forest resources.This article reviewed the classical remotely sensed classification methods forest remote sensing classification methods,including pixel-based,object-oriented,red-edge spectral information based and deep learning methods,separately.We also introduced the details and individual advantages of these methods in the some specific applications.Finally,the limitations of the current study on forest remote sensing classification and change monitoring on forest types were indicated in order to provide reference for the dynamic supervision of forest resources under the new situation.
Keywords:Multi-source remote sensing data  Forest classification  Deep learning  Change monitoring
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号