首页 | 本学科首页   官方微博 | 高级检索  
     

带时间窗车辆路径问题的改进粒子群算法研究
引用本文:吴耀华,张念志. 带时间窗车辆路径问题的改进粒子群算法研究[J]. 计算机工程与应用, 2010, 46(15): 230-234. DOI: 10.3778/j.issn.1002-8331.2010.15.068
作者姓名:吴耀华  张念志
作者单位:山东大学 现代物流研究中心,济南 250061
摘    要:设计了一种引入局部近邻机制并且能够优化不可行解的粒子群算法。该算法将粒子群分成相互重叠的子群,在各个子群内寻找近邻,提高了粒子的学习功能和寻找近邻的速度;同时将产生的不可行解进行局部优化,增强了粒子寻找最优的能力。实验结果表明:该算法可以快速求得带时间窗车辆路径问题的满意解。

关 键 词:局部近邻  粒子群算法  车辆路径问题
收稿时间:2008-11-14
修稿时间:2009-2-23 

Modified Particle Swarm Optimization algorithm for vehicle routing problem with time windows
WU Yao-hua,ZHANG Nian-zhi. Modified Particle Swarm Optimization algorithm for vehicle routing problem with time windows[J]. Computer Engineering and Applications, 2010, 46(15): 230-234. DOI: 10.3778/j.issn.1002-8331.2010.15.068
Authors:WU Yao-hua  ZHANG Nian-zhi
Affiliation:The Logistics Research Center,Shandong University,Jinan 250061,China
Abstract:This paper gives a local near neighborhood Particle Swarm Optimization (PSO) algorithm that can optimize the unfeasible particle’s position.By dividing the particle swarm into several overlapping subgroups and looking for near neighbors in various subgroups,the proposed algorithm can effectively improve the learning of particles and increase the speed of particles to find neighbors.It can also increase the speed to search the optimized result via optimizing the unfeasible particles.The experiment results prove the high efficiency of the algorithm to solve the vehicle routing problem with time windows.
Keywords:local near neighbor  Particle Swarm Optimization(PSO)  Vehicle Routing Problem(VRP)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号