首页 | 本学科首页   官方微博 | 高级检索  
     


Tissue response to hafnium
Authors:S Mohammadi  M Esposito  M Cucu  L E Ericson  P Thomsen
Affiliation:(1) Institute of Anatomy and Cell Biology, Göteborg University, Göteborg, Sweden;(2) Department of Orthodontics, Göteborg University, Göteborg, Sweden
Abstract:The aim of the present experimental study was to evaluate the tissue response to hafnium (Hf) a reactive metal closely related to titanium (Ti) and zirconium (Zr). Hf has not been previously evaluated as implant material in a biologic environment. In a first experiment, 21 machined Hf non-threaded implants (test) and 21 similar Ti implants (control) were inserted in the abdominal wall of 21 rats. Animals were sacrificed after 8 days (6 rats), 6 (7 rats) and 12 weeks (8 rats). In a second experiment, 18 rabbits received 18 Hf and 18 Ti threaded implants in their tibiae, one implant in each tibia. The rabbits were sacrificed after 6, 12 and 24 weeks (6 animals/time interval). The bulk metal of the abdominal wall implants, embedded together with the surrounding tissue, was electrolytically dissolved and semithin (1 mgrm) sections of the intact tissue–implant interface were evaluated by light microscopy (morphometry). Bone-implant contact and bone area within threads were evaluated in ground sections. In soft tissues, a fluid space containing predominantly monocytes/macrophages surrounded the abdominal implants at 8 days. At 6 and 12 weeks, a fibrous capsule, consisting of layers of macrophages and fibroblasts, surrounded the implants. Macrophages, including multinuclear giant cells, always formed the innermost layer in contact with the implant surface. No quantitative or qualitative difference in the tissue organization was detected between Ti and Hf implants. In rabbits, 6 weeks after insertion, the proximal two threads located within the cortical bone were filled with bone in contact with Hf and Ti. The distal threads contained bone marrow. After 12 and 24 weeks, mature bone was present in the proximal 3–4 implant threads. No statistically significant difference was found between Hf and Ti implants at any time periods. It is concluded that Hf is an interesting metal for biomedical applications in bone and soft tissue. © 2001 Kluwer Academic Publishers
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号