首页 | 本学科首页   官方微博 | 高级检索  
     


A relation between wear volume and sliding time for composite materials
Authors:Z. Eliezer  C.J. Schulz  H.E. Mecredy
Affiliation:Department of Mechanical Engineering and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712 U.S.A.
Abstract:Friction and wear experiments on two graphite fiber-aluminum matrix composites and two commercially pure metals (aluminum and copper) were conducted on a brake-type friction machine. The counterface material was graphitic cast iron. The composite samples were tested with the graphite fibers perpendicular to the counterface; the load varied from 5 to 100 N. The initial sliding velocity varied from 2.0 to 11.4 m s?1. The wear resistance of the HM-Al 1100 graphite fiber-aluminum matrix composite was found to be more than one order of magnitude better than that of the unreinforced matrix material. With aluminum and copper, the wear volume per braking cycle is proportional to the product of load and sliding distance in accord with both the adhesion and delamination theories of wear. For the two composite materials studied, the wear volume per braking cycle is proportional to the product of load and sliding time which cannot be explained by either of the two wear models. Thus the wear mechanism of composites might be fundamentally different from that of pure metals.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号