首页 | 本学科首页   官方微博 | 高级检索  
     


Rheological and thermal properties of milk gels formed with κ-carrageenan. I. Sodium caseinate
Authors:D Oakenfull  E Miyoshi  K Nishinari  A Scott
Affiliation:a Food Science Australia, P.O. Box 52, North Ryde, NSW 2113, Australia;b Department of Food and Nutrition, Faculty of Human Life Science, Osaka City University, Sumiyoshi, Osaka 559, Japan
Abstract:Mixed gels, formed by κ-carrageenan, and sodium caseinate were studied by differential scanning calorimetry (DSC) and rheometry. DSC showed that during gelation (i.e. cooling) the thermal behaviour of κ-carrageenan was almost uninfluenced by the presence of sodium caseinate. Thus the interaction of κ-carrageenan with sodium caseinate has little (or no) effect on the carrageenan's coil-to-helix transition. In contrast, during melting, added sodium caseinate strongly modified the thermal behaviour. The DSC peak became progressively broader with addition of sodium caseinate, indicating that the junction zones are highly heterogeneous in the mixed gel. Rheometry showed that sodium caseinate strongly influences the storage modulus (G′). In experiments in which the concentration of sodium caseinate was fixed and that of κ-carrageenan varied, plots of G′ vs. concentration of κ-carrageenan were biphasic, with an abrupt change in slope at a concentration that increased linearly with the concentration of sodium caseinate. When the concentration of κ-carrageenan was constant and that of sodium caseinate varied, G′ as a function of concentration of sodium caseinate passed through a minimum. This behaviour could be modelled quantitatively, by assuming that: (a) the sodium caseinate adsorbs κ-carrageenan, but with a limited adsorptive capacity; (b) sodium caseinate aggregates (sub-micelles) with adsorbed κ-carrageenan can associate via interaction between free ends of adsorbed κ-carrageenan chains and form a gel network; and (c) the contributions to G′ from the sodium caseinate–κ-carrageenan network and the network formed by κ-carrageenan alone are additive. At low κ-carrageenan to sodium caseinate ratios, the sodium caseinate and κ-carrageenan combine to form a mixed gel. As the ratio of κ-carrageenan to sodium caseinate increases, the sodium caseinate becomes saturated and no further association with κ-carrageenan can occur—the increase in G′, as further κ-carrageenan is added, comes from a gel network formed by κ-carrageenan alone.
Keywords:Sodium caseinate  Milk gels  κ  -Carrageenan  Rheology  Thermal properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号