首页 | 本学科首页   官方微博 | 高级检索  
     

基于机会约束规划的主动配电网能量优化调度研究
引用本文:王健,谢桦,孙健. 基于机会约束规划的主动配电网能量优化调度研究[J]. 电力系统保护与控制, 2014, 42(13): 45-52
作者姓名:王健  谢桦  孙健
作者单位:国家能源主动配电网技术研发中心,北京交通大学,北京 100044;国家能源主动配电网技术研发中心,北京交通大学,北京 100044;国家电网北京电力科学研究院,北京 100075
基金项目:清华大学电力系统国家重点实验室开放基金资助;国家电网北京市电力公司科技项目(5202011304HH);国家863高技术基金项目(2011AA05A306)
摘    要:主动配电网(Active Distribution Network)的产生对于加大可再生能源的消纳能力、提高用电互动化水平、实现配电网的灵活智能管理发挥着重要的作用,逐渐成为未来智能电网发展的重要方向。其中主动配电网能量管理系统(DMSs)作为主动配电网的最高决策中心,通过对各分布式电源的有效控制和调度,保障配电网的全局优化运行。为提高主动配电网运行的经济性和可靠性,通过对主动配电网能量优化调度技术进行分析,考虑到风力发电和光伏发电的不确定性,结合随机模拟技术和惩罚函数方法,基于机会约束规划建立了含有风力发电机、光伏发电单元以及储能装置的主动配电网能量调度随机数学模型。在满足各种约束条件的基础上,使用改进的粒子群算法求解该模型。并以某地区实际系统为算例,通过与标准粒子群算法进行比较,验证所提模型的正确性与有效性。

关 键 词:主动配电网  能量管理系统  随机模拟技术  机会约束规划  改进粒子群算法
收稿时间:2013-09-14
修稿时间:2013-12-11

Study on energy dispatch strategy of active distribution network using chance-constrained programming
WANG Jian,XIE Hua and SUN Jian. Study on energy dispatch strategy of active distribution network using chance-constrained programming[J]. Power System Protection and Control, 2014, 42(13): 45-52
Authors:WANG Jian  XIE Hua  SUN Jian
Affiliation:New Energy Research Institute, Beijing Jiaotong University, Beijing 100044, China;New Energy Research Institute, Beijing Jiaotong University, Beijing 100044, China;Beijing Electric Power Research Institute, Beijing 100075, China
Abstract:Active distribution network has gradually become the important direction of the future smart power grid. It plays an important role in increasing capability of renewable energy accommodation, improving the power utilization level and realizing the flexible intelligent distribution network management. The active distribution network energy management system (DMSs), which is the highest decision-making center of active distribution network, uses effective controlling and scheduling of the distributed power to guarantee global optimization operation of distribution network. This paper aims to improve the economy and reliability of the active distribution network. As the wind power and photovoltaic power generation have uncertainty, it uses random simulation technique and the penalty function method, based on the chance-constrained programming to establish a energy scheduling mathematical model, which has wind turbines, photovoltaic power generation unit and the active power energy storage device. Considering various constraint conditions, the model uses the improved particle swarm algorithm to solve. In order to verify the correctness and effectiveness of the provided model, an actual system in a certain area is used as an example and the standard particle swarm algorithm is compared.
Keywords:active distribution network   DMSs   random simulation technique   chance-constrained programming   improved particle swarm algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号