首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化算法的神经网络在油品质量预测中的应用
引用本文:李方方,赵英凯,贾玉莹. 基于粒子群优化算法的神经网络在油品质量预测中的应用[J]. 计算机应用, 2006, 26(5): 1122-1124
作者姓名:李方方  赵英凯  贾玉莹
作者单位:南京工业大学,自动化学院,江苏,南京,210009;南京工业大学,信息科学与工程学院,江苏,南京,210009
摘    要:粒子群优化算法是基于群体智能的全局优化技术,它通过了粒子间的相互作用,对解空间进行智能搜索,从而发现最优解。其优势在于操作简单,容易实现。文中将粒子群算法和神经网络进行融合,优化神经网络的权值和域值,充分发挥了粒子群算法的全局寻优能力和BP算法的局部搜索优势,并与改进的BP算法进行了比较 。油品质量预测的实例表明,将粒子群算法用于神经网络的优化,收敛速度更快,预测精度更高,而且算法简单。

关 键 词:粒子群  神经网络  油品质量预测  优化
文章编号:1001-9081(2006)05-1122-03
收稿时间:2005-11-30
修稿时间:2005-11-302006-03-01

Application of neural network based on particle swarm algorithm for the prediction of oil quality
LI Fang-fang,ZHAO Ying-kai,JIA Yu-ying. Application of neural network based on particle swarm algorithm for the prediction of oil quality[J]. Journal of Computer Applications, 2006, 26(5): 1122-1124
Authors:LI Fang-fang  ZHAO Ying-kai  JIA Yu-ying
Abstract:PSO(particle swarm optimization) algorithm is a kind of stochastic global optimization based on swarm intelligence. Through the interaction of particles, PSO searches the solution space intelligently and finds out the best solution. The advantage of PSO is that it is easy to operate and to achieve. A model integrating PSO and NN (neural network) was established in this paper, which takes full use of the global optimization of PSO and local accurate searching of BP. The example of oil quality prediction shows that PSONN is more efficient and has good generalization.
Keywords:particle swarm   neural network   oil quality prediction   optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号