首页 | 本学科首页   官方微博 | 高级检索  
     


Room temperature hydrogen gas sensitivity of nanocrystalline pure tin oxide
Authors:Shukla S  Seal S
Affiliation:Advanced Materials Processing and Analysis Center (AMPAC), Mechanical Materials Aerospace Engineering Department (MMAE), University of Central Florida, Orlando, Florida 32816, USA.
Abstract:Nanocrystalline (6-8 nm) tin oxide (SnO2) thin film (100-150 nm) sensor is synthesized via sol-gel dip-coating process. The thin film is characterized using focused ion-beam microscopy (FIB) and high-resolution transmission electron microscopy (HRTEM) techniques to determine the film thickness and the nanocrystallite size. The utilization of nanocrystalline pure-SnO2 thin film to sense a typical reducing gas such as hydrogen, at room temperature, is demonstrated in this investigation. The grain growth behavior of nanocrystalline pure-SnO2 is analyzed, which shows very low activation energy (9 kJ/mol) for the grain growth within the nanocrystallite size range of 3-20 nm. This low activation energy value is correlated, via excess oxygen-ion vacancy concentration, with the room temperature hydrogen gas sensitivity of the nanocrystalline pure-SnO2 thin film sensor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号