首页 | 本学科首页   官方微博 | 高级检索  
     

分离式复合土工膜鼓胀变形的膜布复合规律
引用本文:薛 霞,李旺林,卫如春,杨 哲,韩瑞晨,汪万升. 分离式复合土工膜鼓胀变形的膜布复合规律[J]. 四川大学学报(工程科学版), 2023, 55(6): 142-150
作者姓名:薛 霞  李旺林  卫如春  杨 哲  韩瑞晨  汪万升
作者单位:济南大学水利与环境学院,济南大学水利与环境学院,山东大学海洋研究院,济南大学水利与环境学院,济南大学水利与环境学院,济南大学水利与环境学院
基金项目:山东省自然科学(ZR2019MEE106)
摘    要:分离式复合土工膜广泛应用于平原水库全库盘水平防渗工程中。为研究鼓胀变形及破坏时其中土工膜和土工布的作用规律,基于环向约束球形鼓胀变形模型,利用室内鼓胀变形试验和层状复合材料理论方法,分析了分离式复合土工膜(两布一膜250/0.4/250)的鼓胀变形及破坏特征、鼓胀压力和应力的膜布复合规律,并探讨了该规律的初步应用。结果表明:由于土工布的透水透气性,分离式复合土工膜发生鼓胀变形时,与压力介质接触的最下层土工布为鼓胀变形无效层,其上方的土工膜和土工布为鼓胀变形有效层;有效层中最上层土工布首先发生裂口型破坏,土工布破坏后土工膜也会瞬间破坏;分离式复合土工膜的鼓胀压力(含胀破压力)等于有效层土工膜和土工布的鼓胀压力之和,应力(含胀破应力)等于有效层土工膜和土工布的应力与其相应厚度百分比的乘积之和,胀破高度和胀破应变与单层土工布的近似相等;有效层土工膜/布材料本身的应力越大,所组成的复合材料应力也越大;有效层中某一材料厚度百分比越大,复合材料应力越接近该材料的应力值,且接近的快慢程度与有效层材料之间的应力差值大小成正比。对于不同规格、类型基础材料组合成的不同种分离式复合土工膜,研究结果有助于确定其鼓胀变形力学特性,并能为实际应用中的材料选型提供参考。

关 键 词:复合土工膜  鼓胀变形  力学特性  复合规律
收稿时间:2022-06-21
修稿时间:2022-12-14

Geomembrane-geotextile composite rules for bulging deformation of separated composite geomembrane
Xue Xi,Li Wanglin,Wei Ruchun,Yang Zhe,Han Ruichen and Wang Wansheng. Geomembrane-geotextile composite rules for bulging deformation of separated composite geomembrane[J]. Journal of Sichuan University (Engineering Science Edition), 2023, 55(6): 142-150
Authors:Xue Xi  Li Wanglin  Wei Ruchun  Yang Zhe  Han Ruichen  Wang Wansheng
Affiliation:School of Water conservancy and Environment,University of Jinan,School of Water conservancy and Environment,University of Jinan,Institute of Marine Science and Technology,Shandong University,School of Water conservancy and Environment,University of Jinan,School of Water conservancy and Environment,University of Jinan,School of Water conservancy and Environment,University of Jinan
Abstract:The separated composite geomembranes are widely used in the horizontal anti-seepage engineering of plain reservoir bases. To study the action principles of geomembrane and geotextile in bulging deformation and failure, based on the ring-constrained spherical bulging deformation model, laboratory bulging deformation test and theoretical analysis method of layered composite materials were adopted to analyze the bulging deformation and failure characteristics of the separated composite geomembrane (two geomembranes and one geotextile 250/0.4/250) and geomembrane-geotextile composite rules of bulging pressure and stress. The preliminary application of the rules was also discussed. The results showed that: when the separated composite geomembrane bulges, due to water/air permeability, the lowest geotextile in contact with pressure medium was defined as ineffective bulging layers, while the upper geomembrane and geotextile layers were considered as effective bulging layers; the uppermost geotextile in the effective layer was the first to undergo fissure-type damage, and the geomembrane also failed instantly after the geotextile broke; the bulging pressure (including bursting pressure) was the total pressure of each effective layer, while the bulging stress (including bursting stress) was the sum of the product of each effective layer''s thickness percentage and stress; the bursting height and bursting strain of the separated composite geomembrane were approximately equal to that of geotextile; the higher the stress in the effective layer of geomembrane/geotextile material itself, the higher the stress in the resulting composite materials; the greater the percentage of thickness of a material, the closer the stress of the composite materials was to the stress value of that material, and the degree of rapidity of approach was proportional to the magnitude of the stress difference between the effective layers. For different kinds of separated composite geomembranes combined with different sizes and types of base materials, the research results are helpful for determining the mechanical properties of bulge deformation and can provide a reference for material selections in practical applications.
Keywords:composite geomembrane   bulging deformation   mechanical characteristics   composite rules
点击此处可从《四川大学学报(工程科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(工程科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号