首页 | 本学科首页   官方微博 | 高级检索  
     

基于多策略人工蜂群的多序列比对算法
引用本文:匡芳君,张思扬,刘传才. 基于多策略人工蜂群的多序列比对算法[J]. 控制与决策, 2018, 33(11): 1990-1996
作者姓名:匡芳君  张思扬  刘传才
作者单位:温州商学院信息工程学院,浙江温州325035;南京理工大学计算机科学与工程学院,南京210094,温州商学院信息工程学院,浙江温州325035,南京理工大学计算机科学与工程学院,南京210094
基金项目:国家自然科学基金项目(61373063,61233011,61402227).
摘    要:多序列比对是生物信息学中最重要和最具挑战性的任务之一.基于多序列比对是NP 完全组合优化问题,引入Tent 混沌初始化种群策略、不同蜂种的邻域搜索策略和锦标赛选择策略等,提出一种基于多策略人工蜂群的多序列比对算法.该算法应用Tent混沌初始化种群策略以使初始个体多样化并获取较好初始解;针对不同蜂种的特性设计不同的邻域搜索策略以平衡算法的全局探索和局部开发能力.同时引入序列比对的蜜源编码方法以适应多序列比对的离散性.实验结果表明,所提出算法的鲁棒性较强,能获取较好的比对性能和生物特性.

关 键 词:人工蜂群算法  多策略  Tent混沌初始化  邻域搜索  多序列比对

Multiple sequence alignment algorithm based on multi-strategy artificial bee colony
KUANG Fang-jun,ZHANG Si-yang and LIU Chuan-cai. Multiple sequence alignment algorithm based on multi-strategy artificial bee colony[J]. Control and Decision, 2018, 33(11): 1990-1996
Authors:KUANG Fang-jun  ZHANG Si-yang  LIU Chuan-cai
Affiliation:School of Information Engineering,Wenzhou Business College,Wenzhou 325035,China;School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China,School of Information Engineering,Wenzhou Business College,Wenzhou 325035,China and School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Abstract:Multiple sequence alignment(MSA), known as NP-complete combinatorial optimization problem, is one of the most important and challenging tasks in bioinformatics.A multi-strategy artificial bee colony(MS-ABC) algorithm is proposed for MSA, which is composed of multiple strategies, such as the Tent chaotic initialization population strategy, different neighborhood search strategies and tournament selection strategy.In the MSA-ABC algorithm, the Tent chaotic initialization population strategy is presented to diversify the initial individuals and to obtain good initial solutions.Then, the different neighborhood search strategies for different bee species are designed to balance the global exploration and the local exploitation.Moreover, the food source encoding method is used to adapt discreteness of MSA.The experimental results demonstrate that the proposed algorithm is more robust and can obtain better alignment quality and biological characteristics.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号