首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进势场蚁群算法的机器人路径规划
引用本文:王晓燕,杨乐,张宇,孟帅. 基于改进势场蚁群算法的机器人路径规划[J]. 控制与决策, 2018, 33(10): 1775-1781
作者姓名:王晓燕  杨乐  张宇  孟帅
作者单位:西安建筑科技大学机电工程学院,西安710055,西安建筑科技大学机电工程学院,西安710055,西安建筑科技大学机电工程学院,西安710055,西安建筑科技大学机电工程学院,西安710055
基金项目:陕西省教育厅自然科学研究项目(14JK1405,14JK1427).
摘    要:提出一种全局静态环境下移动机器人路径规划的改进势场蚁群算法.该算法采用人工势场法求得的初始路径和机器人与下一个节点之间的距离综合构造启发信息,并引入启发信息递减系数,避免了传统蚁群算法由于启发信息误导所致的局部最优问题;依据零点定理, 提出初始信息素不均衡分配原则,不同的栅格位置赋予不同的初始信息素,降低蚁群搜索的盲目性,提高算法的搜索效率;设定迭代阈值,自适应调节信息素挥发系数,使得该算法具有较高的全局搜索能力,避免出现停滞现象.仿真结果验证了所提出算法的可行性和有效性.

关 键 词:路径规划  蚁群算法  人工势场法  启发信息

Robot path planning based on improved ant colony algorithm with potential field heuristic
WANG Xiao-yan,YANG Le,ZHANG Yu and MENG Shuai. Robot path planning based on improved ant colony algorithm with potential field heuristic[J]. Control and Decision, 2018, 33(10): 1775-1781
Authors:WANG Xiao-yan  YANG Le  ZHANG Yu  MENG Shuai
Affiliation:School of Mechatronic Engineering,Xián University of Architecture and Technology,Xián 710055,China,School of Mechatronic Engineering,Xián University of Architecture and Technology,Xián 710055,China,School of Mechatronic Engineering,Xián University of Architecture and Technology,Xián 710055,China and School of Mechatronic Engineering,Xián University of Architecture and Technology,Xián 710055,China
Abstract:The paper proposes an improved ant colony algorithm with potential field heuristic for the path planning of mobile robots in the global static environment. The algorithm constructs the comprehensive heuristic information based on the initial path obatined by using the artificial potential field method and the distance between the robot and the next node. Then, the heuristic information decline coefficient is introduced to avoid the local optimization problem caused by misleading information of the traditional ant colony algorithm. Based on the zero point theorem, this paper proposes an initial pheromone unequal allocation principle. Various grid positions are endowed with different initial pheromones, which decreases the blindness of ant colony search and improves the searching efficiency of the algorithm. An iterative threshold is set to adaptively adjust pheromone volatilization coefficients. In this way, the algorithm has excellent global searching ability, and the stagnation phenomenon can be avoided. The simulation results show the feasibility and effectiveness of the proposed method.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号