首页 | 本学科首页   官方微博 | 高级检索  
     


Nodal ant colony optimization for solving profit based unit commitment problem for GENCOs
Authors:C. Christopher ColumbusAuthor Vitae  K. Chandrasekaran Author VitaeSishaj P. Simon Author Vitae
Affiliation:Department of Electrical and Electronics Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
Abstract:This paper proposes a nodal ant colony optimization (NACO) technique to solve profit based unit commitment problem (PBUCP). Generation companies (GENCOs) in a competitive restructured power market, schedule their generators with an objective to maximize their own profit without any regard for system social benefit. Power and reserve prices become important factors in decision process. Ant colony optimization that mimics the behavior of ants foraging activities is suitably implemented to search the UCP search space. Here a search space consisting of optimal combination of binary nodes for unit ON/OFF status is represented for the movement of the ants to maintain good exploration and exploitation search capabilities. The proposed model help GENCOs to make decisions on the quantity of power and reserve that must be put up for sale in the markets and also to schedule generators in order to receive the maximum profit. The effectiveness of the proposed technique for PBUCP is validated on 10 and 36 generating unit systems available in the literature. NACO yields an increase of profit, greater than 1.5%, in comparison with the basic ACO, Muller method and hybrid LR-GA.
Keywords:Profit based unit commitment problem   Deregulated market   Ant colony optimization and nodal ant colony optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号