首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects
Authors:Adrian Sandu  Corina Sandu  Mehdi Ahmadian
Affiliation:(1) Computer Science Department, Virginia Polytechnic Institute and State University, VA, 24061 Blacksburg, United States;(2) Mechanical Engineering Department, Virginia Polytechnic Institute and State University, 101 Randolph Hall, Virginia Tech, Blacksburg, VA, 24061, United States
Abstract:This study explores the use of generalized polynomial chaos theory for modeling complex nonlinear multibody dynamic systems in the presence of parametric and external uncertainty. The polynomial chaos framework has been chosen because it offers an efficient computational approach for the large, nonlinear multibody models of engineering systems of interest, where the number of uncertain parameters is relatively small, while the magnitude of uncertainties can be very large (e.g., vehicle-soil interaction). The proposed methodology allows the quantification of uncertainty distributions in both time and frequency domains, and enables the simulations of multibody systems to produce results with “error bars”. The first part of this study presents the theoretical and computational aspects of the polynomial chaos methodology. Both unconstrained and constrained formulations of multibody dynamics are considered. Direct stochastic collocation is proposed as less expensive alternative to the traditional Galerkin approach. It is established that stochastic collocation is equivalent to a stochastic response surface approach. We show that multi-dimensional basis functions are constructed as tensor products of one-dimensional basis functions and discuss the treatment of polynomial and trigonometric nonlinearities. Parametric uncertainties are modeled by finite-support probability densities. Stochastic forcings are discretized using truncated Karhunen-Loeve expansions. The companion paper “Modeling Multibody Dynamic Systems With Uncertainties. Part II: Numerical Applications” illustrates the use of the proposed methodology on a selected set of test problems. The overall conclusion is that despite its limitations, polynomial chaos is a powerful approach for the simulation of multibody systems with uncertainties.
Keywords:Multibody systems  Uncertainty  Polynomial chaos  Stochastic ODE  Stochastic DAE
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号