首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional BEM for piezoelectric fracture analysis
Affiliation:1. School of Energy and Power Engineering, Shandong University, Jinan 250061, China;2. School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;3. School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Abstract:A boundary element approach with quadratic isoparametric elements, quarter-point elements and singular quarter-point elements for three-dimensional crack problems in piezoelectric solids under mechanical and electrical loading conditions, is presented in this paper for the first time. The procedure is based on Deeg's fundamental solution for anisotropic piezoelectric materials, and the classical extended displacement boundary integral equation. Stress and electric displacement intensity factors are directly evaluated as system unknowns, and also as functions of the computed nodal displacements and electric potentials at crack faces. Special attention is paid to the fundamental solution evaluation. Several three-dimensional crack problems in transversely isotropic bodies under mechanical and electrical loading conditions are analysed. Numerical solutions computed for prismatic cracked 3D plate problems with a plane strain behaviour are in very good agreement with their corresponding 2D BE solutions. Results for a penny shape crack in a piezoelectric cylinder are presented for the first time. The proposed approach is shown to be a simple, robust and useful tool for stress and electric displacement intensity factors evaluation in piezoelectric media.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号