首页 | 本学科首页   官方微博 | 高级检索  
     


Intragranular Particle Residual Stress Strengthening of Al2O3–SiC Nanocomposites
Authors:Xudong Sun  Ji-Guang Li  Shiwen Guo  Zhimeng Xiu  Kai Duan   Xiao Zhi Hu
Affiliation:Key Laboratory for EPM of Ministry of Education, Northeastern University, Shenyang 110006, China; Department of Mechanical and Materials Engineering, The University of Western Australia, Western Australia 6009, Australia
Abstract:Al2O3/SiC ceramic nanocomposites were fabricated from nanocrystalline Al2O3 (10 nm in diameter) and SiC (15 nm in diameter) powders, and a theoretical model of intragranular particle residual stress strengthening was investigated. The SiC nanoparticles in the Al2O3 grains create a normal compressive stress at the grain boundaries and a tangential tensile stress in the Al2O3 grains, resulting in the "strengthening" of the grain boundaries and "weakening" of the grains. The model gives a good explanation of the experimental results of the authors and others which are difficult to be explained by the existing strengthening models, i.e. the maximum strength is normally achieved at about 5 vol% of SiC particles in the Al2O3–SiC ceramic nanocomposites. According to the model, there exists an optimum amount of SiC for strengthening, below which the grain boundaries are not fully "strengthened" and the fracture is mainly intergranular, above which the grains are "weakened" too much and the fracture is mainly transgranular, and at which the fracture is a mixture of intergranular and transgranular.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号