首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应圆边际的深度人脸识别算法
引用本文:才华,孙俊,朱瑞昆,朱新丽,赵义武. 基于自适应圆边际的深度人脸识别算法[J]. 兵工学报, 2021, 42(11): 2424-2432. DOI: 10.3969/j.issn.1000-1093.2021.11.016
作者姓名:才华  孙俊  朱瑞昆  朱新丽  赵义武
作者单位:长春理工大学 电子信息工程学院,吉林 长春130022;长春中国光学科学技术馆,吉林 长春130117;长春理工大学 电子信息工程学院,吉林 长春130022;长春理工大学 空间光电技术研究院,吉林 长春130022
基金项目:国家自然科学基金委员会-中国科学院天文联合基金项目(U1731240).
摘    要:人脸识别是计算机视觉的一个重要研究方向,其中有效的损失函数在人脸识别中起着至关重要的作用。针对现有损失函数没有考虑边际情况,导致模型收敛有限,且在不均衡样本中泛化能力不强的问题,提出自适应圆边际损失函数方法,对边际自身进行研究。通过对边际进行自适应学习,为不同类别学习独有的边际,产生自适应圆边际。为少量样本学习更大边际,从而对少量样本数据类内压缩更紧凑,使模型泛化能力更强,对5种常见的人脸识别基准Megaface、IJB-C、LFW、LFW BLUFR和YTF进行广泛分析和实验验证。结果表明,该方法在不均衡数据集中对现有方法的精确度整体提高了0.5%,有效提高了模型泛化能力,具有明确的收敛状态。

关 键 词:深度人脸识别  自适应圆边际  损失函数  模型泛化能力  收敛状态

Depth Face Recognition Algorithm Based on Adaptive Circle Margin
CAI Hua,SUN Jun,ZHU Ruikun,ZHU Xinli,ZHAO Yiwu. Depth Face Recognition Algorithm Based on Adaptive Circle Margin[J]. Acta Armamentarii, 2021, 42(11): 2424-2432. DOI: 10.3969/j.issn.1000-1093.2021.11.016
Authors:CAI Hua  SUN Jun  ZHU Ruikun  ZHU Xinli  ZHAO Yiwu
Affiliation:(1.School of Electronic Information Engineering,Changchun University of Science and Technology,Changchun 130022,Jilin,China;2.Changchun China Optics Science and Technology Museum,Changchun 130117,Jilin,China;3.School of Opto-Electronic Engineering,Changchun University of Science and Technology,Changchun 130022,Jilin,China)
Abstract:Face recognition is an important research direction of computer vision,and the effective loss functions play a vital role in face recognition. In view of the fact that the existing loss function does not consider the marginal situation to result in a limited model convergence and a low generalization ability is for unbalanced samples,AdaCMloss (Adaptive circle Margin Loss) loss function method is proposed for studying the margin itself.Through the self-adaptive learning of the margin,the unique margin can be learnt for different categories,and the self-adaptive circle margin is generated. A more margin is learnt for a small number of samples,so that the intra-class compression of the data of a small number of samples is more compact and the model generalization ability is stronger. The common face recognition benchmarks Megaface, IJB-C, LFW, LFW BLUFR and YTF are extensively analyzed and experimentally varified. The results show that the proposed method is used to improve the convergence accuracy of existing methods by 0.5% in unbalanced data sets and enhance the model generalization ability effectively, and has a clear convergence state.
Keywords:deepfacerecognition  adaptivecirclemargin  lossfunction  modelgeneralizationability  convergencestate  
本文献已被 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号