首页 | 本学科首页   官方微博 | 高级检索  
     

Fe(III)/rGO/Bi2MoO6复合光催化剂制备及光催化芬顿协同降解苯酚
引用本文:安伟佳,李静,王淑瑶,胡金山,蔺在元,崔文权,刘利,解珺,梁英华.Fe(III)/rGO/Bi2MoO6复合光催化剂制备及光催化芬顿协同降解苯酚[J].无机材料学报,2021,36(6):615-622.
作者姓名:安伟佳  李静  王淑瑶  胡金山  蔺在元  崔文权  刘利  解珺  梁英华
作者单位:1.华北理工大学 化学工程学院, 河北省环境光电催化材料重点实验室, 唐山 063210
2.唐山中地地质工程有限公司, 唐山 063009
3.河北省地矿局第二地质大队, 唐山 063009
基金项目:国家自然科学基金(51672081);河北省自然科学基金(B2018209356);河北省自然科学基金高端钢铁冶金联合基金(B2020209008);河北省教育厅基金(QN2018056)
摘    要:光催化-芬顿技术耦合可高效降解有机污染物。本研究采用溶剂热法制备了Fe(III)掺杂rGO/Bi2MoO6复合催化剂(Fe(III)/rGO/Bi2MoO6), 通过外加H2O2构建了光催化-芬顿协同体系, 可见光照射3 h后对苯酚的降解率(82%)远高于单独光催化(18%)或芬顿反应(48%), 进一步优化条件对苯酚可实现完全降解。这主要是通过Fe得失电子实现价态的转变, 并以此作为桥梁实现光催化-芬顿的协同作用。同时石墨烯的优异导电性能不仅克服了光催化中光生电子空穴难以分离的问题, 而且促进了Fe3+/Fe2+的循环反应, 促使芬顿反应产生更多的羟基自由基(?OH), 进一步提高了苯酚的降解效率。实验考察了Fe(III)含量、催化剂投加量、H2O2含量以及pH等因素对协同降解效果的影响。淬灭实验证明?OH是协同降解体系中最主要的活性物种, ?O2-和h+对降解活性也会产生一定的影响, 结合实验结果提出了Fe(III)/rGO/Bi2MoO6光催化-芬顿协同降解苯酚的机理。

关 键 词:Fe(III)/rGO/Bi2MoO6  光催化-芬顿  协同  降解  
收稿时间:2020-08-10
修稿时间:2020-11-12

Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy
AN Weijia,LI Jing,WANG Shuyao,HU Jinshan,LIN Zaiyuan,CUI Wenquan,LIU Li,XIE Jun,LIANG Yinghua.Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy[J].Journal of Inorganic Materials,2021,36(6):615-622.
Authors:AN Weijia  LI Jing  WANG Shuyao  HU Jinshan  LIN Zaiyuan  CUI Wenquan  LIU Li  XIE Jun  LIANG Yinghua
Affiliation:1. College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, China
2. Tangshan Zhongdi Geological Engineering Co., Ltd., Tangshan 063009, China
3. The Second Geological Team of Hebei Bureau of Geology and Mineral Resources, Tangshan 063009, China
Abstract:The photocatalysis-Fenton technology coupling can efficiently degrade organic pollutants. In this study, Fe(III)-doped rGO/Bi2MoO6 composite catalyst (Fe(III)/rGO/Bi2MoO6) was prepared by solvothermal method, and the photocatalysis-Fenton synergy system was constructed by adding H2O2. The phenol degradation activity under 3 h visible light irradation is 82%, much higher than that of photocatalysis alone (18%) or renton reaction (48%), and further optimization can achieve full degration of phenol. This can be mainly attributed to the transformation of the valence state through the gain and loss of Fe electrons, which serves as a bridge to realize the photocatalysis- Fenton synergy. Meanwhile, the excellent electrical conductivity of graphene overcomes the difficulty of separating photo-generated electron holes in photocatalysis, and promotes the cyclic reaction of Fe3+/Fe2+, and then accelerates the Fenton reaction to produce more free hydroxyl groups (?OH), which further improves the degradation efficiency. Effects of Fe(III) content, catalyst dosage, H2O2 content, and pH on the synergy degradation performance were investigated. The quenching experiment proves that ?OH is one of the main active species in the degradation system, while ?O2- and H+ also have a certain effect on the degradation activity. The mechanism of Fe(III)/rGO/Bi2MoO6 photocatalysis-Fenton synergy degradation is also proposed based on the present experimental results.
Keywords:Fe(III)/rGO/Bi2MoO6  photocatalysis-Fenton  synergy  degradation  
点击此处可从《无机材料学报》浏览原始摘要信息
点击此处可从《无机材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号