首页 | 本学科首页   官方微博 | 高级检索  
     

基于多路交叉的用户金融行为预测
引用本文:程鹏超,杜军平,薛哲. 基于多路交叉的用户金融行为预测[J]. 智能系统学报, 2021, 16(2): 378-384. DOI: 10.11992/tis.202006054
作者姓名:程鹏超  杜军平  薛哲
作者单位:北京邮电大学 智能通信软件与多媒体北京市重点实验室,北京 100876
摘    要:针对通过挖掘用户的金融行为来改善金融领域的服务模式和服务质量的问题,本文提出了一种基于多路交叉特征的用户金融行为预测算法.根据数据包含的属性构建训练的特征,基于因子分解机模型(FM)利用下游行为预测任务对金融数据的特征进行预训练,获取数据特征的隐含向量.引入特征交叉层对金融数据的高阶特征进行提取,解决FM线性模型只能提...

关 键 词:行为预测  金融  多路交叉  残差  多塔模型  预训练  挖掘  联合训练

Prediction of user financial behavior based on multi-way crossing
CHENG Pengchao,DU Junping,XUE Zhe. Prediction of user financial behavior based on multi-way crossing[J]. CAAL Transactions on Intelligent Systems, 2021, 16(2): 378-384. DOI: 10.11992/tis.202006054
Authors:CHENG Pengchao  DU Junping  XUE Zhe
Affiliation:Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract:To improve the service mode and service quality in the financial field by mining the financial behaviors of users, a user financial behavior prediction algorithm based on multi-way crossing (MCUP) is proposed in this paper. First, the training features are constructed based on the attributes contained in the data. Based on the FM model, the downstream behavior prediction tasks are used to pre-train the features of the financial data, and the hidden vectors of the features are obtained. Second, the feature cross-layer is introduced to extract high-order features of financial data, overcoming the disadvantage that the FM linear model can only extract low-order features. Then, the residual network structure is used to extract high-order features of financial data, solving the gradient disappearance problem caused by the too deep network layer. Finally, a unified multi-tower model integrated by the FM, feature cross network, and residual network is used to predict user financial behavior, blending low-order and high-order features. Experimental results show that the proposed algorithm can achieve a better accuracy rate in predicting user financial behavior.
Keywords:behavior prediction   financial   multi-way crossing   residual   multi-tower model   pre-training   mining   joint training
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号