首页 | 本学科首页   官方微博 | 高级检索  
     


Porous spherical LiFePO4·LiMnPO4·Li3V2(PO4)3@C@rGO composites as a high-rate and long-cycle cathode for lithium ion batteries
Affiliation:1. Jiangsu Key Laboratory of Material and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China;2. Shangqiu Polytechnic, Shangqiu 476000, PR China
Abstract:The porous spherical LiFePO4·LiMnPO4·Li3V2(PO4)3@C@rGO (Sample-G) composites are prepared via a spray drying process. The results show that the composites consist of orthorhombic olivine-type LiFe0.5Mn0.5PO4 and monoclinic Li3V2(PO4)3, which are evenly distributed. In particular, nanoparticles are embedded in graphene nanosheets, which are interconnected and stacked to form a porous sphere structure with an interior three-dimensional conductive network, resulting in the huge improvement on electrochemical performance and structural stability. Due to the increased Li+ diffusion coefficient, the composite possesses 98.6 and 82.9 mAh g?1 with capacities retention of 81.6% and 71.8% at 10 and 20C after 1000 cycles, respectively. The mutual cross-doping effect between LFP·LMP·LVP and a porous sphere structure with a 3D conductive network inside provides a practical method for improving the cycling and rate performance.
Keywords:Phosphate cathode material  Lithium ion batteries  Graphene  Porous sphere
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号