首页 | 本学科首页   官方微博 | 高级检索  
     

自步稀疏最优均值主成分分析
引用本文:许子微,陈秀宏. 自步稀疏最优均值主成分分析[J]. 智能系统学报, 2021, 16(3): 416-424. DOI: 10.11992/tis.201911028
作者姓名:许子微  陈秀宏
作者单位:江南大学 数字媒体学院,江苏 无锡 214122
摘    要:主成分分析(PCA)是一种无监督降维方法.然而现有的方法没有考虑样本的差异性,且不能联合地提取样本的重要信息,从而影响了方法的性能.针对以上问题,提出自步稀疏最优均值主成分分析方法.模型以L2,1范数定义损失函数,同时用L2.1范数约束投影矩阵作为正则化项,且将均值作为在迭代中优化的变量,这样可一致地选择重要特征,提高...

关 键 词:图像处理  主成分分析  无监督学习  数据降维  稀疏  最优均值  自步学习  人脸识别

Sparse optimal mean principal component analysis based on self-paced learning
XU Ziwei,CHEN Xiuhong. Sparse optimal mean principal component analysis based on self-paced learning[J]. CAAL Transactions on Intelligent Systems, 2021, 16(3): 416-424. DOI: 10.11992/tis.201911028
Authors:XU Ziwei  CHEN Xiuhong
Affiliation:School of Digital Media, Jiangnan University, Wuxi 214122, China
Abstract:Principal component analysis (PCA) can be referred to as an unsupervised dimensionality reduction approach. However, the existing methods do not consider the difference of samples and cannot jointly extract important information of samples, thus affecting the performance of some methods. For the above problems, based on self-paced learning, we proposed a sparse optimal mean PCA algorithm. In our model, loss of function is defined by $ {L_{{rm{2,1}}}}$ norm, the projection matrix is regularized by $ {L_{{rm{2,1}}}}$ norm, and the mean value is taken as a variable to be optimized in the iteration. In this way, important features can be consistently selected, and the robustness of the method to outliers can be improved. Considering the difference in training samples, we utilized self-paced learning mechanism to complete the learning process of training samples from “simple” to “complex” so as to effectively reduce the influence of outliers. Theoretical analysis and the empirical study revealed that the proposed method could effectively reduce the influence of noise or outliers on the classification progress, thus improving the effect of the classification.
Keywords:image processing   principal component analysis   unsupervised learning   data dimension deduction   sparse   optimal mean   self-paced learning   face recognition
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号