首页 | 本学科首页   官方微博 | 高级检索  
     


Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS)
Affiliation:1. School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072, China;2. Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin 300072, China
Abstract:Because gas turbine engines must operate under increasingly harsh conditions, the degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) is becoming an urgent issue. Mullite (3Al2O3·2SiO2) is considered a potential material for CMAS resistance; however, the performance of mullite in the presence of CMAS is still unclear. In this study, mullite and Al2O3–SiO2 were premixed with yttria stabilized zirconia (YSZ) in different proportions, respectively. Porous ceramic pellets were used to conduct CMAS hot corrosion tests, and the penetration of molten CMAS and its mechanism were investigated. The thermal and mechanical properties of the samples were also characterized. It was found that the introduction of mullite and Al2O3–SiO2 mitigated the penetration of molten CMAS into the pellets owing to the formation of anorthite, especially at 45 wt% mullite/55 wt% YSZ. Compared with Al2O3–SiO2, mullite possesses a higher chemical activity and undergoes a faster reaction with CMAS, thus forming a sealing layer in a short time. Additionally, the thermal expansion coefficient, thermal conductivity, and fracture toughness of different samples were considered to guide the architectural design. Considering the CMAS corrosion resistance, thermal and mechanical performance of TBCs systematically, a TBC system with a multilayer architecture is proposed to provide a theoretical and practical basis for the design and optimization of the TBC microstructure.
Keywords:Thermal barrier coatings (TBCs)  CMAS  Mullite  Corrosion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号