首页 | 本学科首页   官方微博 | 高级检索  
     

混合神经网络和条件随机场相结合的文本情感分析
引用本文:翟学明,魏巍. 混合神经网络和条件随机场相结合的文本情感分析[J]. 智能系统学报, 2021, 16(2): 202-209. DOI: 10.11992/tis.201907041
作者姓名:翟学明  魏巍
作者单位:华北电力大学 控制与计算机工程学院,河北 保定 071003
摘    要:针对当前文本情感分析中神经网络模型训练时间长,上下文信息学习不足的问题,该文提出了一种结合混合神经网络和条件随机场(conditional random fields,CRF)的模型.该模型将神经网络作为语言模型,结合了卷积神经网络(convolutional neural networks,CNN)与双向门控循环单元...

关 键 词:卷积神经网络  门控循环单元  条件随机场  文本情感分析  语言模型  语义特征  上下文信息  分类器

Text sentiment analysis combining hybrid neural network and conditional random field
ZHAI Xueming,WEI Wei. Text sentiment analysis combining hybrid neural network and conditional random field[J]. CAAL Transactions on Intelligent Systems, 2021, 16(2): 202-209. DOI: 10.11992/tis.201907041
Authors:ZHAI Xueming  WEI Wei
Affiliation:School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China
Abstract:To solve problems such as the long training time of neural network models and insufficient contextual-information learning in text sentiment analysis, in this paper, we propose a model that combines a hybrid neural network with the conditional random field (CRF). Taking the neural network as the language model, the model combines the semantic information and structural features of the convolutional neural network with the bi-directional gated recurrent unit. The CRF model is used as a classifier that determines the probability distributions of emotions, from which it can then accurately determine the emotion category. The model was tested on the NLPCC 2014 data set, and achieved an accuracy rate of 91.74%. Compared with other classification models, the proposed model can obtain better accuracy and F values.
Keywords:convolutional neural network (CNN)   gated recurrent unit (GRU)   conditional random field (CRF)   text sentiment analysis   language model   semantic feature   contextual information   classifier
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号