首页 | 本学科首页   官方微博 | 高级检索  
     

基于TensorFlow的恶意代码片段自动取证检测算法
引用本文:李炳龙,佟金龙,张宇,孙怡峰,王清贤,常朝稳. 基于TensorFlow的恶意代码片段自动取证检测算法[J]. 网络与信息安全学报, 2021, 7(4): 154-163. DOI: 10.11959/j.issn.2096-109x.2021048
作者姓名:李炳龙  佟金龙  张宇  孙怡峰  王清贤  常朝稳
作者单位:信息工程大学密码工程学院,河南 郑州 450001
基金项目:国家自然科学基金(60903220)
摘    要:针对数字犯罪事件调查,在复杂、异构及底层的海量证据数据中恶意代码片段识别难的问题,通过分析TensorFlow深度学习模型结构及其特性,提出一种基于TensorFlow的恶意代码片段检测算法框架;通过分析深度学习算法训练流程及其机制,提出一种基于反向梯度训练的算法;为解决不同设备、不同文件系统的证据源中恶意代码片段特征提取问题,提出一种基于存储介质底层的二进制特征预处理算法;为进行反向传播训练,设计并实现了一个代码片段数据集制作算法。实验结果表明,基于TensorFlow的恶意代码片段检测算法针对不同存储介质以及证据存储容器中恶意代码片段的自动取证检测,综合评价指标F1达到 0.922,并且和 CloudStrike、Comodo、FireEye 等杀毒引擎相比,该算法在处理底层代码片段数据方面具有绝对优势。

关 键 词:自动取证  深度学习  全连接神经网络  恶意代码片段  

Auto forensic detecting algorithms of malicious code fragment based on TensorFlow
Binglong LI,Jinlong TONG,Yu ZHANG,Yifeng SUN,Qingxian WANG,Chaowen CHANG. Auto forensic detecting algorithms of malicious code fragment based on TensorFlow[J]. Chinese Journal of Network and Information Security, 2021, 7(4): 154-163. DOI: 10.11959/j.issn.2096-109x.2021048
Authors:Binglong LI  Jinlong TONG  Yu ZHANG  Yifeng SUN  Qingxian WANG  Chaowen CHANG
Affiliation:College of Cryptographic Engineering, Information Engineering University, Zhengzhou 450001, China
Abstract:In order to auto detect the underlying malicious code fragments in complex,heterogeneous and massive evidence data about digital forensic investigation, a framework for malicious code fragment detecting algorithm based on TensorFlow was proposed by analyzing TensorFlow model and its characteristics.Back-propagation training algorithm was designed through the training progress of deep learning.The underlying binary feature pre-processing algorithm of malicious code fragment was discussed and proposed to address the problem about different devices and heterogeneous evidence sources from storage media and such as AFF forensic containers.An algorithm which used to generate data set about code fragments was designed and implemented.The experimental results show that the comprehensive evaluation index F1of the method can reach 0.922, and compared with CloudStrike, Comodo, FireEye antivirus engines, the algorithm has obvious advantage in dealing with the underlying code fragment data from heterogeneous storage media.
Keywords:auto forensics  deep learning  full connected network  malicious code fragment  
点击此处可从《网络与信息安全学报》浏览原始摘要信息
点击此处可从《网络与信息安全学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号