首页 | 本学科首页   官方微博 | 高级检索  
     


Tryptophan mutants of troponin C from skeletal muscle--an optical probe of the regulatory domain
Authors:M She  WJ Dong  PK Umeda  HC Cheung
Affiliation:Department of Physics, University of Alabama at Birmingham, 35294-2041, USA.
Abstract:We have generated a series of chicken skeletal muscle troponin C mutants to study the conformation of the regulatory domain in the N-terminal half of the molecule. These mutants each contained a single Trp at position 22 (helix A), 52 (linker of helices B and C), or 90 (central helix). Some of these mutants also contained additional mutations to introduce a single Cys at a desired position. The mutants were characterized by molecular graphics and CD and found to have a minimum of structural perturbations when compared with the native structure. They also retained the ability to regulate myofibrillar ATPase activity. The fluorescence of Trp22 was sensitive to Ca2+ binding only to the regulatory sites, whereas Trp52 and Trp90 responded to Ca2+ binding to both the regulatory and the Ca2+/Mg2+ sites. The tryptophan quantum yield (Q) of all Trp22-containing mutants was very high (0.33) in the absence of bound Ca2+, compared to that of L-tryptophan in aqueous solution (0.14). Q decreased 25% upon binding of Ca2+ to the regulatory sites. The quantum yields of Trp52 and Trp90 in apo mutants were close to 0.14. In the presence of bound Ca2+ at the regulatory sites, the quantum yield of Trp52 decreased 16%, whereas that of Trp90 increased 25%. Results from acrylamide quenching of the fluorescence of the three Trp residues indicated that Trp22 was the least exposed and Trp52 was the most exposed, consistent with other spectral data that Trp22 was in a relatively nonpolar environment and Trp52 was in a highly polar environment. The ability of Trp52 and Trp90 to sense Ca2+ binding to sites located at both domains suggests inter-domain communication in the protein. These single Trp TnC mutants provide specific signals for probing Ca2+-induced conformational changes in the regulatory domain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号