首页 | 本学科首页   官方微博 | 高级检索  
     

基于频段振动烈度和ARIMA的煤矿减速机状态预测
引用本文:李传涛,郝伟,郝旺身,董辛旻. 基于频段振动烈度和ARIMA的煤矿减速机状态预测[J]. 煤矿机械, 2011, 32(4): 251-253
作者姓名:李传涛  郝伟  郝旺身  董辛旻
作者单位:郑州大学,机械工程学院,郑州,450001
基金项目:2011年度河南省教育厅自然科学研究项目(2011B460012)
摘    要:振动信号反映设备运行的状态,为了能够对设备的运行状态进行有效监控和预报,采用了频段振动烈度分析和ARIMA建模的方法。通过监控各个频段的振动烈度值,能够全面了解设备的状态。根据各个频段的变化趋势,选择处于上升阶段的频段进行ARIMA建模与状态预测。并讨论了如何处理现场数据的非平稳性以及模型类型判别方法,构建合适的时间序列模型。

关 键 词:频段分析  ARIMA建模  状态预测

Study on Coal Gear Box Status Predictive Method Based on Band Vibration Severity and ARIMA
LI Chuan-tao,HAO Wei,HAO Wang-shen,DONG Xin-min. Study on Coal Gear Box Status Predictive Method Based on Band Vibration Severity and ARIMA[J]. Coal Mine Machinery, 2011, 32(4): 251-253
Authors:LI Chuan-tao  HAO Wei  HAO Wang-shen  DONG Xin-min
Affiliation:LI Chuan-tao,HAO Wei,HAO Wang-shen,DONG Xin-min (School of Mechanical Zhengzhou University,Zhengzhou 450001,China)
Abstract:Vibration signals reflect the status of equipment.Vibration severity analysis and ARIMA modeling approach is used to effectively monitor and forecast the status of the equipment.The status of the equipment could be understood by monitoring the value of each band.According to the trends of each band,the rising ones are chosen to do ARIMA modeling and forecast the status.It's discussed that how to handle n on-stationary nature of field data and the discrimination of model type in order to construct a suitable...
Keywords:band vibration severity  ARIMA modeling  status forecast  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号